Citation: | YOU Lei, ZHU Xinglin, CHEN Yu, et al. Tear detection method of conveyor belt based on fully convolutional neural network[J]. Journal of Mine Automation,2022,48(9):16-24. doi: 10.13272/j.issn.1671-251x.2022040087 |
[1] |
HAKAMI F,PRAMANIK A,RIDGWAY N,et al. Developments of rubber material wear in conveyer belt system[J]. Tribology International,2017,111:148-158. doi: 10.1016/j.triboint.2017.03.010
|
[2] |
GUO Xiaoqiang,LIU Xinhua,ZHOU Hao,et al. Belt tear detection for coal mining conveyors[J]. Micromachines,2022,13(3):449. doi: 10.3390/mi13030449
|
[3] |
KOZLOWSKI T,WODECKI J,ZIMROZ R,et al. A diagnostics of conveyor belt splices[J]. Applied Sciences,2020,10(18):6259. doi: 10.3390/app10186259
|
[4] |
QIAO Tiezhu, CHEN Lulu, PANG Yusong, et al. Integrative binocular vision detection method based on infrared and visible light fusion for conveyor belts longitudinal tear[J]. Measurement, 2017, 110: 192-201.
|
[5] |
YANG Ruiyun, QIAO Tiezhu, PANG Yusong, et al. Infrared spectrum analysis method for detection and early warning of longitudinal tear of mine conveyor belt[J]. Measurement, 2020, 165. DOI: 10.1016/j.measurement.2020.107856.
|
[6] |
YANG Yanli, ZHAO Yanfei, MIAO Changyun, et al. On-line longitudinal rip detection of conveyor belts based on machine vision[C]. IEEE International Conference on Signal and Image Processing, Beijing, 2016: 315-318.
|
[7] |
太原理工大学. 一种基于红外图像的实时矿用胶带预警撕裂检测方法: 201811338007.9[P]. 2018-11-12.
Taiyuan University of Technology. A real-time early warning and tear detection method for mine conveyor belt based on infrared images: 201811338007.9[P]. 2018-11-12.
|
[8] |
周宇杰,徐善永,黄友锐,等. 基于改进YOLOv4的输送带损伤检测方法[J]. 工矿自动化,2021,47(11):61-65. doi: 10.13272/j.issn.1671-251x.17843
ZHOU Yujie,XU Shanyong,HUANG Yourui,et al. Conveyor belt damage detection method based on improved YOLOv4[J]. Industry and Mine Automation,2021,47(11):61-65. doi: 10.13272/j.issn.1671-251x.17843
|
[9] |
韩雷. 基于线激光视觉检测的矿用输送机纵向撕裂保护系统研究[J]. 神华科技,2018,16(9):29-31,49. doi: 10.3969/j.issn.1674-8492.2018.09.008
HAN Lei. Study about mine conveyor longitudinal tear protection system by using line laser visual detection[J]. Shenhua Science and Technology,2018,16(9):29-31,49. doi: 10.3969/j.issn.1674-8492.2018.09.008
|
[10] |
LYU Zhiwei,ZHANG Xiaoguang,HU Jiangdi,et al. Visual detection method based on line lasers for the detection of longitudinal tears in conveyor belts[J]. Measurement,2021,183. DOI: 10.1016/j.measurement.2021.109800.
|
[11] |
徐辉,刘丽静,沈科,等. 基于多道线性激光的带式输送机纵向撕裂检测[J]. 工矿自动化,2021,47(7):37-44. doi: 10.13272/j.issn.1671-251x.17681
XU Hui,LIU Lijing,SHEN Ke,et al. Longitudinal tear detection of belt conveyor based on multi linear lasers[J]. Industry and Mine Automation,2021,47(7):37-44. doi: 10.13272/j.issn.1671-251x.17681
|
[12] |
BLAZEJ R,JURDZIAK L,KOZLOWSKI T,et al. The use of magnetic sensors in monitoring the condition of the core in steel cord conveyor belts:tests of the measuring probe and the design of the DiagBelt system[J]. Measurement,2018,123:48-53. doi: 10.1016/j.measurement.2018.03.051
|
[13] |
ZUO Chao,FENG Shijie,HUANG Lei,et al. Phase shifting algorithms for fringe projection profilometry:a review[J]. Optics and Lasers in Engineering,2018,109:23-59. doi: 10.1016/j.optlaseng.2018.04.019
|
[14] |
ZHANG Song. High-speed 3D shape measurement with structured light methods:a review[J]. Optics and Lasers in Engineering,2018,106:119-131.
|
[15] |
黄琬婷,胡小平. 一种基于张氏标定法的单目相机改进标定算法[J]. 导航与控制,2019,18(1):105-111. doi: 10.3969/j.issn.1674-5558.2019.01.014
HUANG Wanting,HU Xiaoping. An improved calibration algorithm of monocular camera based on Zhang's plane calibration method[J]. Navigation and Control,2019,18(1):105-111. doi: 10.3969/j.issn.1674-5558.2019.01.014
|
[16] |
冀振燕,宋晓军,付文杰,等. 激光光条中心线提取研究综述[J]. 测控技术,2021,40(6):1-8. doi: 10.19708/j.ckjs.2021.06.001
JI Zhenyan,SONG Xiaojun,FU Wenjie,et al. Review on centerline extraction for laser stripe[J]. Measurement & Control Technology,2021,40(6):1-8. doi: 10.19708/j.ckjs.2021.06.001
|
[17] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015.
|
[18] |
BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615
|
[19] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
|
[20] |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. European Conference on Computer Vision, 2018: 833-851.
|