Volume 49 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
CHEN Chao, CHEN Tianzhu, ZHANG Majun, et al. Research on pipe-following hole protection drilling technology in broken soft coal seam of the isolated island working face[J]. Journal of Mine Automation,2023,49(1):73-79.  doi: 10.13272/j.issn.1671-251x.2022040084
Citation: CHEN Chao, CHEN Tianzhu, ZHANG Majun, et al. Research on pipe-following hole protection drilling technology in broken soft coal seam of the isolated island working face[J]. Journal of Mine Automation,2023,49(1):73-79.  doi: 10.13272/j.issn.1671-251x.2022040084

Research on pipe-following hole protection drilling technology in broken soft coal seam of the isolated island working face

doi: 10.13272/j.issn.1671-251x.2022040084
  • Received Date: 2022-04-29
  • Rev Recd Date: 2022-12-30
  • Available Online: 2022-08-30
  • It is easy to get stuck and collapse in the borehole of high stress and broken soft coal seam in the isolated island working face. This leads to great difficulty in borehole formation and poor gas extraction effect. In order to solve this problem, this paper puts forward a pipe-following borehole protection drilling technology. The 3206 isolated island working face of Wangpo Coal Mine is selected as the test site. It is analyzed that the working face needs to use high-torque and high-speed drilling rig to enhance the slag removal effect of the drilling tool and the capability to deal with accidents in the borehole. At the same time, it is necessary to consider the process of drilling wall protection in the high-stress section and the efficient slag removal process in the borehole. It is proposed to adopt the pipe-following borehole protection drilling technology in the high stress zone to achieve the effect of wall protection. The spiral drilling nitrogen-assisted slag removal process is adopted to enhance slag removal capacity and reduce the risk of coal spontaneous combustion during drilling. After the borehole passes through the high-stress area, the drilling depth of the borehole in the broken soft coal seam is further improved by optimizing the drilling tool assembly. The field test results show that the average hole depth is increased by 149% when using the second-stage hole protection drilling than when using rotary drilling directly. The average hole depth is increased by 114% when using the third-stage hole protection drilling. It shows that the pipe-following hole protection drilling is more suitable for the drilling construction of broken soft coal seam in 3206 island working face than the rotary drilling construction technology. The hole-forming rate of the plug-type screw drill pipe is higher than that of the screw thread-type screw drill pipe. The hole-forming depth of nitrogen assisted slag removal process for screw drilling is significantly greater than that of the dry screw slag removal process. ${\text{ϕ}} $100/63.5-28 mm plug-in sealed spiral drill pipe and nitrogen assisted slag removal process are most suitable for gas pre-extraction drilling construction in 3206 isolated island working face. The average hole depth is 100.6 m, and the hole formation rate is 80%. The gas extraction effect is better than other drilling tools and drilling slag removal technology.

     

  • loading
  • [1]
    孔维一,赵和平,刘泉霖,等. 瓦斯抽采钻孔喷涂式封孔技术[J]. 工矿自动化,2021,47(12):19-24. doi: 10.13272/j.issn.1671-251x.2021050022

    KONG Weiyi,ZHAO Heping,LIU Quanlin,et al. Spray sealing technology for gas extraction drilling[J]. Industry and Mine Automation,2021,47(12):19-24. doi: 10.13272/j.issn.1671-251x.2021050022
    [2]
    刘飞,许超,王鲜,等. 顺煤层超长定向钻孔钻压传递规律研究[J]. 工矿自动化,2019,45(8):97-100.

    LIU Fei,XU Chao,WANG Xian,et al. Research of weight on bit transmission law of ultra-long directional borehole along coal seam[J]. Industry and Mine Automation,2019,45(8):97-100.
    [3]
    郭永军. 王坡矿3210孤岛工作面矿压分布规律探讨[J]. 江西煤炭科技,2020(2):1-3. doi: 10.3969/j.issn.1006-2572.2020.02.002

    GUO Yongjun. Study on law of rock pressure at 3210 island coal face in Wangpo Colliery[J]. Jiangxi Coal Science & Technology,2020(2):1-3. doi: 10.3969/j.issn.1006-2572.2020.02.002
    [4]
    刘鑫. 孤岛工作面水侵沿空巷道围岩稳控技术研究[J]. 工矿自动化,2021,47(9):118-125.

    LIU Xin. Research on stability control technology of surrounding rock along goaf roadway with water intrusion in isolated island working face[J]. Industry and Mine Automation,2021,47(9):118-125.
    [5]
    姜希印,陶维国. 孤岛工作面冲击地压多指标监测及危险性区域划分[J]. 工矿自动化,2020,46(1):44-49.

    JIANG Xiyin,TAO Weiguo. Multi-index monitoring of rock burst and risk zone division of island mining coal face[J]. Industry and Mine Automation,2020,46(1):44-49.
    [6]
    张茂微,鲁健. 孤岛工作面过上覆采空区采场及顶板应力演化规律研究[J]. 煤炭工程,2020,52(12):108-112.

    ZHANG Maowei,LU Jian. Stress evolution law of stope and roof of isolated working face advancing beneath overlying goaf[J]. Coal Engineering,2020,52(12):108-112.
    [7]
    郭忠华. 孤岛工作面巷道钻孔卸压机理及关键参数确定[J]. 太原理工大学学报,2020,51(6):906-911. doi: 10.16355/j.cnki.issn1007-9432tyut.2020.06.018

    GUO Zhonghua. Borehole destressing mechanism and key parameters determination of roadway in isolated working face[J]. Journal of Taiyuan University of Technology,2020,51(6):906-911. doi: 10.16355/j.cnki.issn1007-9432tyut.2020.06.018
    [8]
    范晓刚,马钱钱,范彦阳. 应力集中区瓦斯抽采钻孔施工工艺研究与应用[J]. 能源技术与管理,2019,44(1):34-36. doi: 10.3969/j.issn.1672-9943.2019.01.014

    FAN Xiaogang,MA Qianqian,FAN Yanyang. Study and application of gas drainage drilling technology in stress concentration area[J]. Energy Technology and Management,2019,44(1):34-36. doi: 10.3969/j.issn.1672-9943.2019.01.014
    [9]
    郝永进,李乔乔,王毅,等. 松软突出煤层复合排渣钻进技术试验研究[J]. 探矿工程(岩土钻掘工程),2016,43(6):22-25.

    HAO Yongjin,LI Qiaoqiao,WANG Yi,et al. Composite slag discharging drilling technology in soft and outburst coal seam[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2016,43(6):22-25.
    [10]
    张宏钧,姚克,张幼振. 松软煤层螺旋钻杆与压风复合排渣钻进技术装备[J]. 煤矿安全,2017,48(7):99-102. doi: 10.13347/j.cnki.mkaq.2017.07.026

    ZHANG Hongjun,YAO Ke,ZHANG Youzhen. Spiral drill pipe and composite slag discharge drilling technology and equipment in soft coal seam[J]. Safety in Coal Mines,2017,48(7):99-102. doi: 10.13347/j.cnki.mkaq.2017.07.026
    [11]
    方俊,李泉新,许超,等. 松软突出煤层瓦斯抽采钻孔施工技术及发展趋势[J]. 煤炭科学技术,2018,46(5):130-137,172.

    FANG Jun,LI Quanxin,XU Chao,et al. Construction technology and development tendency of gas drainage borehole in soft and outburst seam[J]. Coal Science and Technology,2018,46(5):130-137,172.
    [12]
    孙平贺,刘伟胜,杨涵涵,等. 中国非开挖水平定向钻进装备与技术研究应用进展[J]. 工程科学学报,2022,44(1):122-130. doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201012

    SUN Pinghe,LIU Weisheng,YANG Hanhan,et al. Progress in research and applications of trenchless horizontal directional drilling equipment and technology in China[J]. Chinese Journal of Engineering,2022,44(1):122-130. doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201012
    [13]
    许超,姜磊,王鲜,等. 顺煤层超长定向钻孔复合钻进摩阻规律研究[J]. 煤田地质与勘探,2021,49(5):265-271.

    XU Chao,JIANG Lei,WANG Xian,et al. Friction law of compound drilling along the coal seam with super-long directional drilling[J]. Coal Geology & Exploration,2021,49(5):265-271.
    [14]
    宋传祥,贾楠生,季文淼,等. 定向钻进技术与装备在穿层定向长钻孔中的应用[J]. 钻探工程,2021,48(8):83-88.

    SONG Chuanxiang,JIA Nansheng,JI Wenmiao,et al. Application of directional drilling technology and equipment in cross-bed directional long hole drilling[J]. Drilling Engineering,2021,48(8):83-88.
    [15]
    赵建国,李泉新,刘建林,等. 煤矿井下双级双速扩孔技术研究与应用[J]. 煤炭科学技术,2021,49(7):133-138. doi: 10.13199/j.cnki.cst.2021.07.018

    ZHAO Jianguo,LI Quanxin,LIU Jianlin,et al. Research and application of two-stage and two-speed reaming technology in coal mine[J]. Coal Science and Technology,2021,49(7):133-138. doi: 10.13199/j.cnki.cst.2021.07.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (203) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return