Citation: | GUI Fangjun, LI Yao. Coal gangue detection based on CBA-YOLO model[J]. Journal of Mine Automation,2022,48(6):128-133. doi: 10.13272/j.issn.1671-251x.2022020033 |
[1] |
张振红. 我国干法选煤技术发展现状与应用前景[J]. 选煤技术,2019(1):43-47,52.
ZHANG Zhenhong. China's coal dry cleaning technology−state-of-the-art and application prospect[J]. Coal Preparation Technology,2019(1):43-47,52.
|
[2] |
SU Lingling, CAO Xiangang, MA Hongwei, et al. Research on coal gangue identification by using convolutional neural network[C]//IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, Xi'an, 2018: 810-814.
|
[3] |
HONG Huichao, ZHENG Lixin, ZHU Jianqing, et al. Automatic recognition of coal and gangue based on convolution neural network[EB/OL]. (2017-12-03)[2022-01-05]. https://arxiv.org/abs/1712.00720.
|
[4] |
赵明辉. 一种煤矸石优化识别方法[J]. 工矿自动化,2020,46(7):113-116.
ZHAO Minghui. A coal-gangue optimization identification method[J]. Industry and Mine Automation,2020,46(7):113-116.
|
[5] |
GIRSHICK R. Fast R-CNN[C]//IEEE International Conference on Computer Vision, Chile, 2015.
|
[6] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// European Conference on Computer Vision, 2016: 21-37.
|
[7] |
REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. (2018-04-08) [2022-01-05]. https://arxiv.org/abs/1804.02767.
|
[8] |
沈科,季亮,张袁浩,等. 基于改进YOLOv5s模型的煤矸目标检测[J]. 工矿自动化,2021,47(11):107-111,118.
SHEN Ke,JI Liang,ZHANG Yuanhao,et al. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Industry and Mine Automation,2021,47(11):107-111,118.
|
[9] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 779-788.
|
[10] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2022-01-05]. https://arxiv.org/abs/2004.10934.
|
[11] |
DENG Jun,XUAN Xiaojing,WANG Weifeng,et al. A review of research on object detection based on deep learning[J]. Journal of Physics Conference Series,2020,1684:012028. doi: 10.1088/1742-6596/1684/1/012028
|
[12] |
HU Jie,SHEN Li,ALBANIE S,et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023. doi: 10.1109/TPAMI.2019.2913372
|
[13] |
LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[EB/OL]. (2019-05-18)[2022-01-06]. https://arxiv.org/abs/1903.06586.
|
[14] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[EB/OL]. (2018-07-18)[2022-01-06]. https://arxiv.org/abs/1807.06521.
|
[15] |
TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[EB/OL]. (2020-07-27)[2022-01-06]. https://arxiv.org/abs/1911.09070.
|
[16] |
JIANG Borui, LUO Ruixuan, MAO Jiayuan, et al. Acquisition of localization confidence for accurate object detection[C]// European Conference on Computer Vision, 2018: 816-832.
|
[17] |
REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression [EB/OL]. (2019-04-15)[2022-01-06]. https://arxiv.org/abs/1902.09630.
|
[18] |
ZHENG Zhaohui, WANG Ping, REN Dongwei, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[EB/OL]. (2021-07-05)[2022-01-06]. https://arxiv.org/abs/2005.03572.
|
[19] |
HE Jiabo, ERFANI S, MA Xingjun, et al. Alpha-IoU: a family of power intersection over union losses for bounding box regression[EB/OL]. (2021-10-26)[2022-01-06]. https://arxiv.org/abs/2110.13675.
|