Volume 48 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
ZHENG Jianying. Risk assessment of water inrush from coal seam floor based on comprehensive weighting[J]. Journal of Mine Automation,2022,48(8):140-146.  doi: 10.13272/j.issn.1671-251x.2022010016
Citation: ZHENG Jianying. Risk assessment of water inrush from coal seam floor based on comprehensive weighting[J]. Journal of Mine Automation,2022,48(8):140-146.  doi: 10.13272/j.issn.1671-251x.2022010016

Risk assessment of water inrush from coal seam floor based on comprehensive weighting

doi: 10.13272/j.issn.1671-251x.2022010016
  • Received Date: 2022-01-11
  • Rev Recd Date: 2022-07-30
  • Available Online: 2022-06-07
  • The existing risk assessment model of water inrush from coal seam floor has the problems of weak generalization capability and low accuracy for the working face with complex geological structures. In order to solve the above problems, a risk assessment model of water inrush from coal seam floor based on comprehensive weighting by analytic hierarchy process (AHP) and improved entropy weight method (IEW) is proposed. Based on the unascertained measure of single index, the comprehensive weight of each assessment index affecting water inrush from coal seam floor is given by the AHP-IEW comprehensive weighting method. A comprehensive risk assessment model of water inrush from coal seam floor is established. The unascertained measure value of each assessment index is calculated by using the model. Then according to the recognition criteria of confidence, the grade is determined and the assessment result is obtained. The feasibility of the model is verified by taking 1305 working face of Pandao Coal Industry Co., Ltd. as the research object. ① According to the actual situation of the coal mine, the mining depth, coal seam thickness, coal seam dip angle, aquifer water pressure, effective water barrier thickness, floor brittle rock thickness, fault fractal dimension and floor integrity that affect the floor water inrush risk are selected as the assessment indexes. The graded standard of floor water inrush risk is established. ② The single index measure functions are constructed to obtain the measure value of each assessment index. ③ The comprehensive weight of each assessment index is obtained by AHP-IEW comprehensive weighting method. ④ The comprehensive measure assessment vector is determined by combining the comprehensive weight and the unascertained measure matrix of the assessment index. ⑤ According to the comprehensive measure assessment vector, the investigation points in the study area of the coal mine are classified into risk grades. The results are compared with the field investigation results. The verification results show that compared with IEW assessment results, the prediction accuracy of risk assessment model of water inrush from coal seam floor based on AHP-IEW comprehensive weighting is higher. The assessment results are consistent with the actual investigation situation in the mining process of the working face.

     

  • loading
  • [1]
    马丹,段宏宇,张吉雄,等. 断层破碎带岩体突水灾害的蠕变−冲蚀耦合力学特性试验研究[J]. 岩石力学与工程学报,2021,40(9):1751-1763.

    MA Dan,DUAN Hongyu,ZHANG Jixiong,et al. Experimental investigation of creep-erosion coupling mechanical properties of water inrush hazards in fault fracture rock masses[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1751-1763.
    [2]
    武强,樊振丽,刘守强,等. 基于GIS的信息融合型含水层富水性评价方法−富水性指数法[J]. 煤炭学报,2011,36(7):1124-1128. doi: 10.13225/j.cnki.jccs.2011.07.002

    WU Qiang,FAN Zhenli,LIU Shouqiang,et al. Water-richness evaluation method of water-filled aquifer based on the principle of information fusion with GIS:water-richness index method[J]. Journal of China Coal Society,2011,36(7):1124-1128. doi: 10.13225/j.cnki.jccs.2011.07.002
    [3]
    王鑫,郑洁铭,张成行,等. 基于AHP熵值法的煤层底板突水预测评价[J]. 中国煤炭,2018,44(12):126-130. doi: 10.3969/j.issn.1006-530X.2018.12.028

    WANG Xin,ZHENG Jieming,ZHANG Chenghang,et al. Forecast and evaluation of water inrush from coal floor based on AHP entropy method[J]. China Coal,2018,44(12):126-130. doi: 10.3969/j.issn.1006-530X.2018.12.028
    [4]
    张文泉,张新,焦钰峰. 基于PCA−GA−LSSVR的工作面涌水量预测[J]. 煤炭技术,2016,35(5):144-147.

    ZHANG Wenquan,ZHANG Xin,JIAO Yufeng. Prediction of mining face inflow based on PCA-GA-LSSVR[J]. Coal Technology,2016,35(5):144-147.
    [5]
    张晓亮. 熵权耦合层次分析赋权在煤层底板突水评价中的应用[J]. 煤田地质与勘探,2017,45(3):91-95. doi: 10.3969/j.issn.1001-1986.2017.03.017

    ZHANG Xiaoliang. Application of entropy weight method and analytic hierarchy process in evaluation of water inrush from coal seam floor[J]. Coal Geology & Exploration,2017,45(3):91-95. doi: 10.3969/j.issn.1001-1986.2017.03.017
    [6]
    刘伟韬,孙茜,徐百超. 基于GIS及主成分熵权法的底板突水危险性评价[J]. 矿业研究与开发,2020,40(11):83-88.

    LIU Weitao,SUN Xi,XU Baichao. Risk evaluation of water inrush from coal seam floor based on GIS and principal component analysis-entropy weight method[J]. Mining Research and Development,2020,40(11):83-88.
    [7]
    张成行,郑洁铭,张玉卓,等. 基于Surfer的煤层底板突水评价方法及其应用[J]. 矿业安全与环保,2020,47(5):60-64.

    ZHANG Chenghang,ZHENG Jieming,ZHANG Yuzhuo,et al. Evaluation method of coal seam floor water inrush based on Surfer and its application[J]. Mining Safety & Environmental Protection,2020,47(5):60-64.
    [8]
    周航,廖昕,陈仕阔,等. 基于组合赋权和未确知测度的深埋隧道岩爆危险性评价−以川藏交通廊道桑珠岭隧道为例[J]. 地球科学,2022,47(6):2130-2148.

    ZHOU Hang,LIAO Xin,CHEN Shikuo,et al. Rockburst risk assessment of deep lying tunnels based on combination weight and unascertained measure theory:a case study of Sangzhuling tunnel on Sichuan-Tibet traffic torridor[J]. Earth Science,2022,47(6):2130-2148.
    [9]
    苏生瑞,周阳,周泽华,等. 基于EW−AHP和未确知测 度理论的崩塌危险性评价[J]. 工程地质学报,2019,27(3):577-584.

    SU Shengrui,ZHOU Yang,ZHOU Zehua,et al. Hazard assessment of collapse using EW-AHP and unascertained measure theory[J]. Journal of Engineering Geology,2019,27(3):577-584.
    [10]
    郑伯坤,尹旭岩,黄腾龙,等. 基于未确知测度理论的三山岛金矿充填工艺方案优选[J]. 矿业研究与开发,2020,40(2):13-18.

    ZHENG Bokun,YIN Xuyan,HUANG Tenglong,et al. Optimization of filling process scheme for Sanshandao Gold Mine based on unascertained measure theory[J]. Mining Research and Development,2020,40(2):13-18.
    [11]
    SAATY T L,VARGAS L. Estimating technological coefficients by the analytic hierarchy process[J]. Socio-Economic Planning Sciences,1979,13(6):333-336. doi: 10.1016/0038-0121(79)90015-6
    [12]
    王心义,姚孟杰,张建国,等. 基于改进AHP法与模糊可变集理论的煤层底板突水危险性评价[J]. 采矿与安全工程学报,2019,36(3):558-565.

    WANG Xinyi,YAO Mengjie,ZHANG Jianguo,et al. Evaluation of water bursting in coal seam floor based on improved AHP and fuzzy variable set theory[J]. Journal of Mining & Safety Engineering,2019,36(3):558-565.
    [13]
    鲁海峰,孟祥帅,张元,等. 采场底板层状结构关键层隔水性能力学分析[J]. 中国矿业大学学报,2020,49(6):1057-1066.

    LU Haifeng,MENG Xiangshuai,ZHANG Yuan,et al. Mechanical analysis of water barrier performance of floor layered structure key stratum on coal face[J]. Journal of China University of Mining & Technology,2020,49(6):1057-1066.
    [14]
    翟强,顾伟红,赵映璎. 基于未确知测度理论的隧道施工瓦斯灾害风险评价[J]. 铁道科学与工程学报,2021,18(3):803-812.

    ZHAI Qiang,GU Weihong,ZHAO Yingying. Risk assessment of gas disaster in tunnel construction based on unascertained measurement theory[J]. Journal of Railway Science and Engineering,2021,18(3):803-812.
    [15]
    LIU Weitao,HAN Mengke,MENG Xiangxi,et al. Mine water inrush risk assessment evaluation based on the GIS and combination weight-cloud model:a case study[J]. ACS Omega,2021,6(48):32671-32681. doi: 10.1021/acsomega.1c04357
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (185) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return