Volume 48 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
ZHANG Lang, ZHANG Yinghui, ZHANG Yibin, et al. Research on fault diagnosis method of ventilation network based on machine learning[J]. Journal of Mine Automation,2022,48(3):91-98.  doi: 10.13272/j.issn.1671-251x.2021120093
Citation: ZHANG Lang, ZHANG Yinghui, ZHANG Yibin, et al. Research on fault diagnosis method of ventilation network based on machine learning[J]. Journal of Mine Automation,2022,48(3):91-98.  doi: 10.13272/j.issn.1671-251x.2021120093

Research on fault diagnosis method of ventilation network based on machine learning

doi: 10.13272/j.issn.1671-251x.2021120093
  • Received Date: 2021-12-28
  • Rev Recd Date: 2022-03-08
  • Available Online: 2022-03-05
  • The machine learning algorithm predicts unknown data by learning known data. Most of the existing fault diagnosis methods of ventilation system focus on a machine learning algorithm, which can not guarantee the selected algorithm to be optimal. In order to solve this problem, eight machine learning algorithms are compared, and three algorithms, support vector machine ( SVM), random forest and neural network, are selected to study the fault diagnosis of ventilation network. According to the actual layout of the mine ventilation system, a ventilation network pipeline model is constructed according to the criteria of geometric similarity, motion similarity and dynamic similarity. A ventilation network consisting of pipeline network branches and pipeline network nodes is obtained, and air volume data is obtained through experiments, and the data is preprocessed by a standardized method. Through cross-validation and grid search, the parameters of ventilation network fault diagnosis model based on SVM, random forest and neural network are optimized. The results of experiment and field test show that the accuracy of ventilation network fault diagnosis model based on SVM, random forest and neural network are 0.89, 0.88 and 0.95 respectively on the test set of experimental platform, and 0.86, 0.90 and 0.96 respectively on the test set of coal mine field. The neural network model has the best fault diagnosis effect. 120 sets of fresh air volume data collected in coal mine field are input into neural network model for prediction, and the fault diagnosis accuracy rate reaches 0.98, which verifies the feasibility and accuracy of the ventilation network fault diagnosis model based on neural network.

     

  • loading
  • [1]
    张瑞新,毛善君,赵红泽,等. 智慧露天矿山建设基本框架及体系设计[J]. 煤炭科学技术,2019,47(10):1-23.

    ZHANG Ruixin,MAO Shanjun,ZHAO Hongze,et al. Framework and structure design of system construction for intelligent open-pit mine[J]. Coal Science and Technology,2019,47(10):1-23.
    [2]
    王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10.

    WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.
    [3]
    周福宝,魏连江,夏同强,等. 矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报,2020,45(6):2225-2235.

    ZHOU Fubao,WEI Lianjiang,XIA Tongqiang,et al. Principle,key technology and preliminary realization of mine intelligent ventilation[J]. Journal of China Coal Society,2020,45(6):2225-2235.
    [4]
    王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305.
    [5]
    张庆华,姚亚虎,赵吉玉. 我国矿井通风技术现状及智能化发展展望[J]. 煤炭科学技术,2020,48(2):97-103.

    ZHANG Qinghua,YAO Yahu,ZHAO Jiyu. Status of mine ventilation technology in China and prospects for intelligent development[J]. Coal Science and Technology,2020,48(2):97-103.
    [6]
    宁剑,任怡睿,林济铿,等. 基于人工智能及信息融合的电力系统故障诊断方法[J]. 电网技术,2021,45(8):2925-2936.

    NING Jian,REN Yirui,LIN Jikeng,et al. Power system fault diagnosis based on artificial intelligence and information fusion[J]. Power System Technology,2021,45(8):2925-2936.
    [7]
    陈瑞, 杨春曦, 翟持, 等. 特征加权的高斯加权K近邻−支持向量机的水泵故障诊断方法[J/OL]. 机械科学与技术: 1-8[2022-03-08]. DOI: 10.13433/j.cnki.1003-8728.20200358.

    CHEN Rui, YANG Chunxi, ZHAI Chi, et al. A weighted GWKNN-SVM algorithm for fault diagnosis of water pumps[J/OL]. Mechanical Science and Technology for Aerospace Engineering: 1-8[2022-03-08]. DOI: 10.13433/j.cnki.1003-8728.20200358.
    [8]
    程晓之,王凯,郝海清,等. 矿井局部通风智能调控系统及关键技术研究[J]. 工矿自动化,2021,47(9):18-24.

    CHENG Xiaozhi,WANG Kai,HAO Haiqing,et al. Research on intelligent regulation and control system and key technology of mine local ventilation[J]. Industry and Mine Automation,2021,47(9):18-24.
    [9]
    熊中杰,邱颖宁,冯延晖,等. 基于机器学习的风电机组变桨系统故障研究[J]. 太阳能学报,2020,41(5):85-90.

    XIONG Zhongjie,QIU Yingning,FENG Yanhui,et al. Fault analysis of wind turbine pitch system based on machine learning[J]. Acta Energiae Solaris Sinica,2020,41(5):85-90.
    [10]
    刘剑,郭欣,邓立军,等. 基于风量特征的矿井通风系统阻变型单故障源诊断[J]. 煤炭学报,2018,43(1):143-149.

    LIU Jian,GUO Xin,DENG Lijun,et al. Resistance variant single fault source diagnosis of mine ventilation system based on air volume characteristic[J]. Journal of China Coal Society,2018,43(1):143-149.
    [11]
    刘剑,刘丽,黄德,等. 基于风量−风压复合特征的通风系统阻变型故障诊断[J]. 中国安全生产科学技术,2020,16(1):85-91.

    LIU Jian,LIU Li,HUANG De,et al. Resistance variant fault diagnosis of ventilation system based on composite features of air volume and air pressure[J]. Journal of Safety Science and Technology,2020,16(1):85-91.
    [12]
    刘剑,蒋清华,刘丽,等. 矿井通风系统阻变型故障诊断及风速传感器位置优化[J]. 煤炭学报,2021,46(6):1907-1914.

    LIU Jian,JIANG Qinghua,LIU Li,et al. Resistance variant fault diagnosis of mine ventilation system and position optimization of wind speed sensor[J]. Journal of China Coal Society,2021,46(6):1907-1914.
    [13]
    周启超,刘剑,刘丽,等. 基于SVM的通风系统故障诊断惩罚系数与核函数系数优化研究[J]. 中国安全生产科学技术,2019,15(4):45-51.

    ZHOU Qichao,LIU Jian,LIU Li,et al. Research on fault fiagnosis penalty coefficient and kernel function coefficient optimization of ventilation system based on SVM[J]. Journal of Safety Science and Technology,2019,15(4):45-51.
    [14]
    黄德,刘剑,刘永,等. 矿井通风阻变故障观测特征组合选择试验研究[J]. 煤炭学报,2021,46(12):3922-3933.

    HUANG De,LIU Jian,LIU Yong,et al. Experimental research on combination selection of observation feature of resistance variation fault in mine ventilation[J]. Journal of China Coal Society,2021,46(12):3922-3933.
    [15]
    刘彦青. 基于巷道摩擦阻力系数BP神经网络预测模型的矿井风网风量预测研究[J]. 矿业安全与环保,2021,48(2):101-106.

    LIU Yanqing. Study on the air quantity of mine ventilation network based on BP neural network prediction model of friction resistance coefficient in roadway[J]. Mining Safety & Environmental Protection,2021,48(2):101-106.
    [16]
    汤志立,徐千军. 基于9种机器学习算法的岩爆预测研究[J]. 岩石力学与工程学报,2020,39(4):773-781.

    TANG Zhili,XU Qianjun. Rockburst prediction based on nine machine learning algorithms[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(4):773-781.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (331) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return