Citation: | ZUO Chunzi, WANG Zheng, ZHANG Ke, et al. Coal dust image segmentation method based on improved DeepLabV3+[J]. Journal of Mine Automation,2022,48(5):52-57, 64. doi: 10.13272/j.issn.1671-251x.2021120086 |
[1] |
王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.
WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.
|
[2] |
韩建国. 神华智能矿山建设关键技术研发与示范[J]. 煤炭学报,2016,41(12):3181-3189.
HAN Jianguo. Key technology research and demonstration of intelligent mines in Shenhua Group[J]. Journal of China Coal Society,2016,41(12):3181-3189.
|
[3] |
PLESSIS J J L D. Active explosion barrier performance against methane and coal dust explosions[J]. International Journal of Coal Science and Technology,2015(4):261-268.
|
[4] |
张锦仁. 选煤技术的现状及发展趋势探索[J]. 内蒙古煤炭经济,2020(6):194. doi: 10.3969/j.issn.1008-0155.2020.06.133
ZHANG Jinren. Exploration on the status quo and development trend of coal preparation technology[J]. Inner Mongolia Coal Economy,2020(6):194. doi: 10.3969/j.issn.1008-0155.2020.06.133
|
[5] |
吴开兴,宋剑. 基于灰度共生矩阵的煤与矸石自动识别研究[J]. 煤炭工程,2016,48(2):98-101.
WU Kaixing,SONG Jian. Automatic coal-gangue identification based on gray level co-occurrence matrix[J]. Coal Engineering,2016,48(2):98-101.
|
[6] |
郜亚松,张步勤,郎利影. 基于深度学习的煤矸石识别技术与实现[J]. 煤炭科学技术,2021,49(12):202-208.
GAO Yasong,ZHANG Buqin,LANG Liying. Coal and gangue recognition technology and implementation based on deep learning[J]. Coal Science and Technology,2021,49(12):202-208.
|
[7] |
ZHOU Hao, ZHANG Jun, LEI Jun, et al. Image semantic segmentation based on FCN-CRF model[C]//International Conference on Image, Vision and Computing, Portsmouth, 2016: 9-14
|
[8] |
ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]// IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2016.
|
[9] |
BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(12):2481-2495.
|
[10] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[M]//NAVAB N, HORNEGGER J, WELLS W M, et al. Medical image computing and computer-assisted intervention, Springer, Cham, 2015: 234-241.
|
[11] |
王征,张赫林,李冬艳. 特征压缩激活作用下U−Net网络的煤尘颗粒特征提取[J]. 煤炭学报,2021,46(9):3056-3065.
WANG Zheng,ZHANG Helin,LI Dongyan. Feature extraction of coal dust particles based on U-Net combined with squeeze and excitation module[J]. Journal of China Coal Society,2021,46(9):3056-3065.
|
[12] |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[EB/OL]. (2018-08-22) [2021-11-20]. https://arxiv.org/abs/1802.02611.
|
[13] |
HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design[EB/OL]. (2021-03-04) [2021-11-20]. https://arxiv.org/abs/2103.02907.
|
[14] |
CHEN L C,PAPANDREOU G,KOKKINOS I,et al. DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848. doi: 10.1109/TPAMI.2017.2699184
|
[15] |
翁和王,叶球孙. 图像处理中特征提取的应用及增强算法研究[J]. 重庆理工大学学报(自然科学),2016,30(7):119-122.
WENG Hewang,YE Qiusun. Applications of feature extraction and enhancement algorithm in image processing[J]. Journal of Chongqing University of Technology(Natural Science),2016,30(7):119-122.
|
[16] |
常雪昕,韩军,廖子豪. 基于语义分割的输电线路螺丝识别的研究与实现[J]. 工业控制计算机,2019,32(8):118-120. doi: 10.3969/j.issn.1001-182X.2019.08.046
CHANG Xuexin,HAN Jun,LIAO Zihao. Transmission line screw recognition based on semantic segmentation[J]. Industrial Control Computer,2019,32(8):118-120. doi: 10.3969/j.issn.1001-182X.2019.08.046
|
[17] |
屈航, 嵇启春, 段中兴. 改进Deeplab V3+网络在视觉SLAM三维地图构建应用[J/OL]. 小型微型计算机系统: 1-6[2021-12-07]. http://kns.cnki.net/kcms/detail/21.1106.TP.20210818.1048.026.html.
QU Hang, JI Qichun, DUAN Zhongxing. Improved Deeplab V3+ network application for visual SLAM 3D map construction[J/OL]. Journal of Chinese Computer Systems: 1-6[2021-12-07]. http://kns.cnki.net/kcms/detail/21.1106.TP.20210818.1048.026.html.
|