Citation: | LUO Xiangyu, LIU Junbao, LUO Yingxiao, et al. Roof pressure prediction method of coal working face based on spatiotemporal correlation analysis[J]. Industry and Mine Automation,2022,48(1):83-88. doi: 10.13272/j.issn.1671-251x.2021100012 |
[1] |
宁小亮. 2013—2018年全国煤矿事故规律分析及对策研究[J]. 工矿自动化,2020,46(7):34-41.
NING Xiaoliang. Law analysis and counter measures research of coal mine accidents in China from 2013 to 2018[J]. Industry and Mine Automation,2020,46(7):34-41.
|
[2] |
徐刚, 黄志增, 范志忠, 等. 工作面顶板灾害类型、监测与防治技术体系[J]. 煤炭科学技术,2021,49(2):1-11.
XU Gang, HUANG Zhizeng, FAN Zhizhong, et al. Types, monitoring and prevention technology system of roof disasters in mining face[J]. Coal Science and Technology,2021,49(2):1-11.
|
[3] |
尹春雷, 魏文艳, 何勇华, 等. 基于大数据分析与线性回归模型的工作面顶板压力研究[J]. 自动化应用,2021(5):46-50.
YIN Chunlei, WEI Wenyan, HE Yonghua, et al. Research on roof pressure of working face based on big data analysis and linear regression model[J]. Automation Application,2021(5):46-50.
|
[4] |
程敬义, 万志军, PENG Syd S, 等. 基于海量矿压监测数据的采场支架与顶板状态智能感知技术[J]. 煤炭学报,2020,45(6):2090-2103.
CHENG Jingyi, WAN Zhijun, PENG S S, et al. Technology of intelligent sensing of longwall shield supports status and roof strata based on massive shield pressure monitoring data[J]. Journal of China Coal Society,2020,45(6):2090-2103.
|
[5] |
屈世甲, 李鹏. 基于支架工作阻力大数据的工作面顶板矿压预测技术研究[J]. 矿业安全与环保,2019,46(2):92-97. doi: 10.3969/j.issn.1008-4495.2019.02.021
QU Shijia, LI Peng. Research on prediction technology of roof mining pressure based on big data of support resistance[J]. Mining Safety & Environmental Protection,2019,46(2):92-97. doi: 10.3969/j.issn.1008-4495.2019.02.021
|
[6] |
尹希文, 徐刚, 刘前进, 等. 基于支架载荷的矿压双周期分析预测方法[J]. 煤炭学报,2021,46(10):3116-3126.
YIN Xiwen, XU Gang, LIU Qianjin, et al. Method of double-cycle analysis and prediction for rock pressure based on the support load[J]. Journal of China Coal Society,2021,46(10):3116-3126.
|
[7] |
吴宛容. 基于改进灰色神经网络模型的顶板压力预测研究[D]. 徐州: 中国矿业大学, 2014.
WU Wanrong. Research on hybrid grey-neural network for roof pressure forecasting in coal mine[D]. Xuzhou: China University of Mining and Technology, 2014.
|
[8] |
曾庆田, 吕珍珍, 石永奎, 等. 基于Prophet+LSTM模型的煤矿井下工作面矿压预测研究[J]. 煤炭科学技术,2021,49(7):16-23.
ZENG Qingtian, LYU Zhenzhen, SHI Yongkui, et al. Research on prediction of underground coal mining face pressure based on Prophet+LSTM model[J]. Coal Science and Technology,2021,49(7):16-23.
|
[9] |
ZHANG Tong, ZHAO Yixin, ZHU Guangpei, et al. A multi-coupling analysis of mining-induced pressure characteristics of shallow-depth coal face in Shendong mining area[J]. Journal of China Coal Society,2016,41(S2):287-296.
|
[10] |
WU Yuting, YUAN Mei, DONG Shaopeng, et al. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks[J]. Neurocomputing,2018,275:167-179. doi: 10.1016/j.neucom.2017.05.063
|
[11] |
KONG Weicong, DONG Zhaoyang, JIA Youwei, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid,2017,10(1):841-851.
|
[12] |
赵毅鑫, 杨志良, 马斌杰, 等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65.
ZHAO Yixin, YANG Zhiliang, MA Binjie, et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65.
|
[13] |
王志奎. 基于支架工作阻力大数据的工作面区域矿压预测技术研究[D]. 青岛: 山东科技大学, 2018.
WANG Zhikui. Research on prediction technology of mining area pressure based on large data of support working resistance[D]. Qingdao: Shandong University of Science and Technology, 2018.
|
[14] |
刘思峰, 党耀国, 方志耕, 等. 灰色系统理论及其应用[M]. 5版. 北京: 科学出版社, 2010: 17-29.
LIU Sifeng, DANG Yaoguo, FANG Zhigeng, et al. Grey system theory and its application[M]. 5th ed. Beijing: Science Press, 2010: 17-29.
|