Volume 48 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
SONG Tao, WANG Jianwen, WU Fengliang, et al. Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement[J]. Journal of Mine Automation,2022,48(4):114-120, 141.  doi: 10.13272/j.issn.1671-251x.2021090073
Citation: SONG Tao, WANG Jianwen, WU Fengliang, et al. Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement[J]. Journal of Mine Automation,2022,48(4):114-120, 141.  doi: 10.13272/j.issn.1671-251x.2021090073

Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement

doi: 10.13272/j.issn.1671-251x.2021090073
  • Received Date: 2021-09-22
  • Rev Recd Date: 2022-01-25
  • Available Online: 2022-03-05
  • The wind flow in underground coal mine is changing all the time. The coal mine ventilation network solution is a static calculation method, which can not solve the dynamic wind flow in real time, and requires wind speed sensor to obtain the dynamic wind flow data. However, the current wind speed sensor has poor stability and incomplete coverage. In order to solve the above problems, a real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement is proposed. The time difference between downwind and upwind of ultrasonic propagation between two points is used to measure the wind speed of the whole section of the roadway. The wind speed measurement result is independent of the sound speed and is not affected by the parameters such as the sound speed, temperature and humidity and air pressure. The problem that the air duct of the traditional wind speed sensor is easily blocked by mine dust is avoided. The resolution of the wind measuring device reaches 0.03 m /s. By continuously collecting the real-time working conditions of air volume and air pressure of main fans and the real-time air volume of some shafts and roadways, the ventilation network is calculated. And the fixed air volume method is used to integrate the monitored air volume into the ventilation network, and the real-time air volume of the whole ventilation network can be obtained through calculation. The Lagrangian multiplier method is used to correct and calculate the air volume and wind resistance in real time, so as to solve the problems of unbalanced air volume of nodes caused by redundant air volume monitoring branches and unbalanced air pressure of loop caused by fluctuation of the wind resistance. It is verified by an example that the calculation results of the real-time calculation method are highly consistent with the monitoring values. At the same time, the results strictly follow the constraints of the loop air pressure balance and the node flow balance. The real-time calculation of the ventilation network with 1 319 branches and 945 nodes in Ningtiaota Coal Mine is carried out. The time for one calculation is only 0.9 s, the number of iteration convergence is about 105, and the calculation results are continuously updated with time. The results verify the feasibility of the real-time calculation method.

     

  • loading
  • [1]
    周福宝,魏连江,夏同强,等. 矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报,2020,45(6):2225-2235.

    ZHOU Fubao,WEI Lianjiang,XIA Tongqiang,et al. Principle,key technology and preliminary realization of mine intelligent ventilation[J]. Journal of China Coal Society,2020,45(6):2225-2235.
    [2]
    张庆华,姚亚虎,赵吉玉. 我国矿井通风技术现状及智能化发展展望[J]. 煤炭科学技术,2020,48(2):97-103.

    ZHANG Qinghua,YAO Yahu,ZHAO Jiyu. Status of mine ventilation technology in China and prospects for intelligent development[J]. Coal Science and Technology,2020,48(2):97-103.
    [3]
    吴奉亮,高佳南,常心坦,等. 矿井风网雅可比矩阵对称特性及并行求解模型[J]. 煤炭学报,2016,41(6):1454-1459.

    WU Fengliang,GAO Jianan,CHANG Xintan,et al. Symmetry property of Jacobian matrix of mine ventilation network and its parallel calculation model[J]. Journal of China Coal Society,2016,41(6):1454-1459.
    [4]
    倪景峰. 矿井通风仿真系统可视化研究 [D]. 阜新: 辽宁工程技术大学, 2004.

    NI Jingfeng. The study on visualization of mine ventilation simulation [D]. Fuxin: Liaoning Technical University, 2004.
    [5]
    朱华新,魏连江,张飞,等. 矿井通风可视化仿真系统的改进研究[J]. 采矿与安全工程学报,2009,26(3):327-331. doi: 10.3969/j.issn.1673-3363.2009.03.015

    ZHU Huaxin,WEI Lianjiang,ZHANG Fei,et al. Improvement of the visual simulation of mine ventilation system[J]. Journal of Mining & Safety Engineering,2009,26(3):327-331. doi: 10.3969/j.issn.1673-3363.2009.03.015
    [6]
    卢辉,袁树杰,马瑞峰,等. 基于Ventsim的南山煤矿孤岛工作面均压通风方案研究[J]. 中国安全生产科学技术,2020,16(8):125-130.

    LU Hui,YUAN Shujie,MA Ruifeng,et al. Study on scheme of pressure equalizing ventilation in isolated island working face of Nanshan Coal Mine based on Ventsim[J]. Journal of Safety Science and Technology,2020,16(8):125-130.
    [7]
    DZIURZYŃSKI W,KRACH A,PAŁKA T. A reliable method of completing and compensating the results of measurements of flow parameters in a network of headings[J]. Archives of Mining Sciences,2015,60(1):3-24. doi: 10.1515/amsc-2015-0001
    [8]
    刘鹏,邹德东. 恶劣环境下矿用压差风速传感器关键技术[J]. 煤矿安全,2021,52(7):89-93.

    LIU Peng,ZOU Dedong. Key technology of mine differential pressure and wind speed sensor used in harsh environment[J]. Safety in Coal Mines,2021,52(7):89-93.
    [9]
    张巍,李雨成,张欢,等. 面向通风智能化的风速传感器结构化数据降噪方法对比[J]. 中国安全生产科学技术,2021,17(8):70-75.

    ZHANG Wei,LI Yucheng,ZHANG Huan,et al. Comparison of structured data noise reduction methods for airflow speed sensor of intelligent ventilation[J]. Journal of Safety Science and Technology,2021,17(8):70-75.
    [10]
    王恩,张浪,李伟,等. 多点移动式测风装置及关键技术[J]. 煤矿安全,2016,47(6):97-99,103.

    WANG En,ZHANG Lang,LI Wei,et al. Key technology of multipoint mobile wind-measured device[J]. Safety in Coal Mines,2016,47(6):97-99,103.
    [11]
    李秉芮,王伟,陈凤梅,等. 基于有向通路矩阵法的风速传感器最优布置[J]. 工矿自动化,2021,47(5):52-57.

    LI Bingrui,WANG Wei,CHEN Fengmei,et al. Optimal arrangement of wind speed sensor based on directed path matrix method[J]. Industry and Mine Automation,2021,47(5):52-57.
    [12]
    蔡峰,袁媛,刘泽功,等. 超声波在煤矿井下环境中的传播与衰减特性[J]. 中国矿业大学学报,2021,50(4):685-690.

    CAI Feng,YUAN Yuan,LIU Zegong,et al. Propagation and attenuation characteristics of ultrasonic in underground environment of coal mine[J]. Journal of China University of Mining & Technology,2021,50(4):685-690.
    [13]
    李伟,霍永金,张浪,等. 矿井通风实时网络解算技术研究[J]. 中国矿业,2016,25(3):167-170. doi: 10.3969/j.issn.1004-4051.2016.03.041

    LI Wei,HUO Yongjin,ZHANG Lang,et al. Research on ventilation real time network solution[J]. China Mining Magazine,2016,25(3):167-170. doi: 10.3969/j.issn.1004-4051.2016.03.041
    [14]
    谈国文. 复杂矿井通风网络可视化动态解算及预警技术[J]. 工矿自动化,2020,46(2):6-11.

    TAN Guowen. Visualized dynamic solution and early warning technology for ventilation network of complex mine[J]. Industry and Mine Automation,2020,46(2):6-11.
    [15]
    谭国运. 矿井通风网络分析及电算方法 [M]. 北京: 煤炭工业出版社, 1991.

    TAN Guoyun. Mine ventilation network analysis and computer calculation method [M]. Beijing: China Coal Industry Publishing House, 1991.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (459) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return