Citation: | TANG Shoufeng, SHI Jingcan, ZHOU Nan, et al. Digital recognition method of methane sensor based on improved CNN-SVM[J]. Industry and Mine Automation,2022,48(1):52-56. doi: 10.13272/j.issn.1671-251x.2021070033 |
[1] |
陈英, 李磊, 汪文源, 等. 家用水表字符的识别算法研究[J]. 现代电子技术,2018,41(18):99-103.
CHEN Ying, LI Lei, WANG Wenyuan, et al. Research on character recognition algorithm for domestic water meter[J]. Modern Electronics Technique,2018,41(18):99-103.
|
[2] |
潘帅成, 韩磊, 陶毅, 等. 基于卷积神经网络的水表字符识别方法研究[J]. 计算机时代,2020(2):25-28.
PAN Shuaicheng, HAN Lei, TAO Yi, et al. Research on character recognition technology for watermeter based on deep convolution neural network[J]. Computer Era,2020(2):25-28.
|
[3] |
肖佳. 基于机器视觉的数字仪表自动读数方法研究[D]. 重庆: 重庆大学, 2017.
XIAO Jia. Study on automatic reading method of digital instrument based on machine vision[D]. Chongqing: Chongqing University, 2017.
|
[4] |
CALEFATI A, GALLO I, NAWAZ S. Reading meter numbers in the wild[C]//Digital Image Computing: Techniques and Applications, Perth, 2019: 1-6.
|
[5] |
高晓利, 李捷, 王维, 等. 基于CRNN的汽车发动机声纹个体识别方法[J]. 火力与指挥控制,2021,46(3):150-153. doi: 10.3969/j.issn.1002-0640.2021.03.025
GAO Xiaoli, LI Jie, WANG Wei, et al. Individual identification method of automobile engine voiceprint based on CRNN[J]. Fire Control & Command Control,2021,46(3):150-153. doi: 10.3969/j.issn.1002-0640.2021.03.025
|
[6] |
SAI K M, CHANDRIKA P H, BEBE K, et al. Optical character recognition using CRNN[J]. International Journal of Innovative Technology and Exploring Engineering,2020,9(8):115-120. doi: 10.35940/ijitee.H6264.069820
|
[7] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
|
[8] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
|
[9] |
LIN Xiaoping, DUAN Peiyong, ZHENG Yuanjie, et al. Posting techniques in indoor environments based on deep learning for intelligent building lighting system[J]. IEEE Access,2020,8:13674-13682. doi: 10.1109/ACCESS.2019.2959667
|
[10] |
孟彩茹, 宋京, 孙明扬. 基于改进CNN与SVM的手势识别研究[J]. 现代电子技术,2020,43(22):128-131.
MENG Cairu, SONG Jing, SUN Mingyang. Research on gesture recognition based on improved CNN and SVM[J]. Modern Electronics Technique,2020,43(22):128-131.
|
[11] |
黄洁. 非色散红外甲烷传感器自动检定系统研究[D]. 徐州: 中国矿业大学, 2020.
HUANG Jie. Research on automatic verification system of non-dispersive infrared methane sensor[D]. Xuzhou: China University of Mining and Technology, 2020.
|
[12] |
林仁耀, 邓浩伟, 兰红. 卷积神经网络结合SVM的手写数字识别算法[J]. 通信技术,2019,52(10):2389-2394. doi: 10.3969/j.issn.1002-0802.2019.10.012
LIN Renyao, DENG Haowei, LAN Hong. Handwritten digits recognition algorithm based on convolutional neural network and SVM[J]. Communications Technology,2019,52(10):2389-2394. doi: 10.3969/j.issn.1002-0802.2019.10.012
|
[13] |
刘昶, 徐超远, 张鑫, 等. 液晶字符识别的CNN和SVM组合分类器[J]. 图学学报,2021,42(1):15-22.
LIU Chang, XU Chaoyuan, ZHANG Xin, et al. A combined classifier based on CNN and SVM for LCD character recognition[J]. Journal of Graphics,2021,42(1):15-22.
|