MA Tianbing, WANG Xiaodong, DU Fei, CHEN Nanna. Fault diagnosis of rigid cage guide based on wavelet packet and BP neural network[J]. Journal of Mine Automation, 2018, 44(8): 76-80. DOI: 10.13272/j.issn.1671-251x.2018010051
Citation: MA Tianbing, WANG Xiaodong, DU Fei, CHEN Nanna. Fault diagnosis of rigid cage guide based on wavelet packet and BP neural network[J]. Journal of Mine Automation, 2018, 44(8): 76-80. DOI: 10.13272/j.issn.1671-251x.2018010051

Fault diagnosis of rigid cage guide based on wavelet packet and BP neural network

More Information
  • In view of problems that existing fault diagnosis methods of rigid cage guide could not eliminate influences of environmental factors and low recognition rate of joint faults, a method of fault diagnosis of rigid cage guide based on wavelet packet and BP neural network was proposed in order to improve accuracy of identification of fault types of rigid cage guide. Experimental platform of lifting system of vertical shaft was set up to simulate two typical fault types of rigid cage guide including step protrusion and joint failure, and vibration acceleration signal of lifting vessel was collected. Wavelet packet decomposition was applied to carry out energy analysis and extract fault characteristic parameters. The fault characteristic parameters were taken as input of BP neural network, and a new test sample was selected to detect diagnostic effect of the neural network. The experimental results show that the method has high accuracy of fault identification, and the confidence level reaches to 0.91.
  • Related Articles

    [1]YAO Yupeng, XIONG Wu. Periodic pressure prediction of working face based on dynamic adaptive sailfish optimization BP neural network[J]. Journal of Mine Automation, 2024, 50(8): 30-37. DOI: 10.13272/j.issn.1671-251x.2024060060
    [2]CUI Lizhen, XU Fanfei, WANG Qiaoli, GAO Lili. Underground adaptive positioning algorithm based on PSO-BP neural network[J]. Journal of Mine Automation, 2018, 44(2): 74-79. DOI: 10.13272/j.issn.1671-251x.2017090028
    [3]SUN Huiying, LIN Zhongpeng, HUANG Can, CHEN Peng. Fault diagnosis of mine ventilator based on improved BP neural network[J]. Journal of Mine Automation, 2017, 43(4): 37-41. DOI: 10.13272/j.issn.1671-251x.2017.04.009
    [4]LIU Jinwei, XIE Xionggang, FANG Jing. Effect analysis of coal seam water infusion based on genetic algorithm-BP neural network[J]. Journal of Mine Automation, 2016, 42(1): 48-51. DOI: 10.13272/j.issn.1671-251x.2016.01.014
    [5]WEI Wenhui, GUO Ye. Boundary effects optimization of ZigBee wireless location based on BP neural network[J]. Journal of Mine Automation, 2014, 40(11): 65-70. DOI: 10.13272/j.issn.1671-251x.2014.11.016
    [6]WANG Sheguo, TIAN Zhimin, ZHANG Feng, WU Shasha. System of coal and gas outburst prediction based on improved BP neural network[J]. Journal of Mine Automation, 2014, 40(5): 34-37. DOI: 10.13272/j.issn.1671-251x.2014.05.009
    [7]ZHANG Ning, REN Mao-wen, LIU Ping. Identification of coal-rock interface based on principal component analysis and BP neural network[J]. Journal of Mine Automation, 2013, 39(4): 55-58.
    [8]LI Mao-dong, LIANG Yong-zhi, JIA Wen-pei, XIA Lu-yi. Application of BP neural network method based on genetic optimization in methane detectio[J]. Journal of Mine Automation, 2013, 39(2): 51-53.
    [9]ZHAO Yan-ming. Predicting Model of Gas Content Based on Improved BP Neural Network[J]. Journal of Mine Automation, 2009, 35(4): 10-13.
    [10]HAN Bing, FU Hua. Gas Monitoring System Based on Data Fusion with BP Neural Network[J]. Journal of Mine Automation, 2008, 34(4): 10-13.
  • Cited by

    Periodical cited type(14)

    1. 马利芬,王伟,池耀磊,朱宏伟,韩磊. 基于噪声数据驱动CNN和LSTM的罐道故障诊断. 无线电工程. 2024(04): 1043-1052 .
    2. 王满利,杨爽,张长森. 基于改进YOLOv8n的立井刚性罐道接头错位检测算法. 煤炭科学技术. 2024(S2): 236-248 .
    3. 杜菲,马天兵,胡伟康,吕英辉,彭猛. 基于小波变换和改进卷积神经网络的刚性罐道故障诊断. 工矿自动化. 2022(09): 42-48+62 . 本站查看
    4. 黄向慧,田坤臣,荣相,魏礼鹏,杨方. 变频环境下异步电机故障诊断方法. 机床与液压. 2022(18): 165-171 .
    5. 陈家璘,周正,冯伟东,贺易,李静茹,赵世文. 一种无线传感器网络节点的故障检测算法. 计算技术与自动化. 2021(01): 38-42 .
    6. 牛伟锋,宗亮亮,吴丰,涂世宇,艾凌云,胡文彬,甘维兵. 基于二维激光扫描仪的煤矿罐道形变检测装置. 工矿自动化. 2021(03): 101-104+111 . 本站查看
    7. 郭秀才,刘冰冰,王力立. 基于小波包和CS-BP神经网络的矿用电力电缆故障诊断. 计算机应用与软件. 2021(09): 105-110 .
    8. 窦国贤,高杨. 一种改进的电网信息系统自动化故障融合监测技术. 计算技术与自动化. 2020(01): 34-38 .
    9. 赵晓群,曹磊,张伍. 应用模块化+大数据处理技术提高计量新装接线率. 电子测量技术. 2020(05): 150-155 .
    10. 窦国贤,高杨. 基于小波分析方法检测电网信息故障的研究. 计算机测量与控制. 2020(09): 38-41+57 .
    11. 王思. 基于多传感器的运动员训练信息融合分析系统设计. 计算技术与自动化. 2020(03): 140-146 .
    12. 马天兵,王鑫泉,王孝东. 基于EMD-PNN网络的刚性罐道故障诊断方法. 电子测量与仪器学报. 2019(03): 58-64 .
    13. 包从望,朱广勇,江伟,刘永志. 基于深度自编码网络的刚性罐道故障诊断. 中国矿业. 2019(08): 99-102 .
    14. 王俊. 基于神经网络的电气自动化设备故障检测方法. 自动化与仪器仪表. 2019(12): 149-152+157 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (75) PDF downloads (11) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return