Volume 50 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
WEI Kai, WANG Ranfeng, WANG Jun, et al. Dynamic feature extraction for flotation froth based on centroid-convex hull-adaptive clustering[J]. Journal of Mine Automation,2024,50(8):151-160.  doi: 10.13272/j.issn.1671-251x.18182
Citation: WEI Kai, WANG Ranfeng, WANG Jun, et al. Dynamic feature extraction for flotation froth based on centroid-convex hull-adaptive clustering[J]. Journal of Mine Automation,2024,50(8):151-160.  doi: 10.13272/j.issn.1671-251x.18182

Dynamic feature extraction for flotation froth based on centroid-convex hull-adaptive clustering

doi: 10.13272/j.issn.1671-251x.18182
  • Received Date: 2024-02-27
  • Rev Recd Date: 2024-08-19
  • Available Online: 2024-09-06
  • In the face of complex flotation site environments and issues such as unclear boundaries caused by the mutual adhesion of flotation froth, existing methods for extracting dynamic features (such as flow velocity and collapse rate) often fail to accurately delineate the dynamic feature sampling regions corresponding to each froth, cannot comprehensively match feature points between adjacent frames, and have difficulty effectively identifying collapse regions. To address these problems, a dynamic feature extraction method for flotation froth based on a centroid-convex hull-adaptive clustering approach is proposed. This method employs an improved Mask2Former, integrated with the multi-scale feature extraction capability of Swin-Transformer, to accurately locate froth centroids and effectively identify collapse regions. An optimal convex hull evaluation function is used to search for the convex hull formed by the centroids of adjacent froth surrounding the target froth, thereby fitting a dynamic feature sampling region close to the actual froth contour. The local feature matching with transformer (LoFTR) algorithm is applied to match feature point pairs between adjacent frames. For all feature point pairs within the dynamic feature sampling region, the main flow velocity of each froth is extracted using the main feature adaptive clustering method based on the OPTICS algorithm. Experimental results show that this method achieves accuracy rates of 88.83% and 97.92% and intersection over union (IoU) rates of 77.90% and 96.52% in ordinary froth centroid location and collapse region identification tasks, respectively. It also achieves a correct feature point pair matching rate of 99.93% with an average exclusion rate of 2.69%. The method effectively delineates feature sampling regions close to the actual froth boundaries under various conditions, enabling the quantitative extraction of each froth's dynamic features.

     

  • loading
  • [1]
    王然风,高建川,付翔. 智能化选煤厂架构及关键技术[J]. 工矿自动化,2019,45(7):28-32.

    WANG Ranfeng,GAO Jianchuan,FU Xiang. Framework and key technologies of intelligent coal preparation plant[J]. Industry and Mine Automation,2019,45(7):28-32.
    [2]
    POPLI K,SEKHAVAT M,AFACAN A,et al. Dynamic modeling and real-time monitoring of froth flotation[J]. Minerals,2015,5(3):570-591. doi: 10.3390/min5030510
    [3]
    赵洪伟,谢永芳,蒋朝辉,等. 基于泡沫图像特征的浮选槽液位智能优化设定方法[J]. 自动化学报,2014,40(6):1086-1097.

    ZHAO Hongwei,XIE Yongfang,JIANG Zhaohui,et al. An intelligent optimal setting approach based on froth features for level of flotation cells[J]. Acta Automatica Sinica,2014,40(6):1086-1097.
    [4]
    MOOLMAN D W,EKSTEEN J J,ALDRICH C,et al. The significance of flotation froth appearance for machine vision control[J]. International Journal of Mineral Processing,1996,48(3/4):135-158.
    [5]
    NEETHLING S J,BRITO-PARADA P R. Predicting flotation behaviour-the interaction between froth stability and performance[J]. Minerals Engineering,2018,120:60-65. doi: 10.1016/j.mineng.2018.02.002
    [6]
    ALDRICH C,MARAIS C,SHEAN B J,et al. Online monitoring and control of froth flotation systems with machine vision:a review[J]. International Journal of Mineral Processing,2010,96(1/2/3/4):1-13.
    [7]
    阳春华,杨尽英,牟学民,等. 基于聚类预分割和高低精度距离重构的彩色浮选泡沫图像分割[J]. 电子与信息学报,2008,30(6):1286-1290.

    YANG Chunhua,YANG Jinying,MU Xuemin,et al. A segmentation method based on clustering pre-segmentation and high-low scale distance reconstruction for colour froth image[J]. Journal of Electronics & Information Technology,2008,30(6):1286-1290.
    [8]
    李建奇. 矿物浮选泡沫图像增强与分割方法研究及应用[D]. 长沙:中南大学,2013.

    LI Jianqi. Froth image enhancement and segmentation method and its application for mineral flotation[D]. Changsha:Central South University,2013.
    [9]
    唐朝晖,郭俊岑,张虎,等. 基于改进I−Attention U−Net的锌浮选泡沫图像分割算法[J]. 湖南大学学报(自然科学版),2023,50(2):12-22.

    TANG Zhaohui,GUO Juncen,ZHANG Hu,et al. Froth image segmentation algorithm based on improved I-Attention U-Net for zinc flotation[J]. Journal of Hunan University (Natural Sciences),2023,50(2):12-22.
    [10]
    牟学民,刘金平,桂卫华,等. 基于SIFT特征配准的浮选泡沫移动速度提取与分析[J]. 信息与控制,2011,40(4):525-531.

    MU Xuemin,LIU Jinping,GUI Weihua,et al. Flotation froth motion velocity extraction and analysis based on SIFT features registration[J]. Information and Control,2011,40(4):525-531.
    [11]
    郭中天,王然风,付翔,等. 基于图像特征匹配的煤泥浮选泡沫速度特征提取方法[J]. 工矿自动化,2022,48(10):34-39,54.

    GUO Zhongtian,WANG Ranfeng,FU Xiang,et al. Method for extracting froth velocity of coal slime flotation based on image feature matching[J]. Journal of Mine Automation,2022,48(10):34-39,54.
    [12]
    唐朝晖,刘金平,桂卫华,等. 基于数字图像处理的浮选泡沫速度特征提取及分析[J]. 中南大学学报(自然科学版),2009,40(6):1616-1622.

    TANG Zhaohui,LIU Jinping,GUI Weihua,et al. Froth bubbles speed characteristic extraction and analysis based on digital image processing[J]. Journal of Central South University (Science and Technology),2009,40(6):1616-1622.
    [13]
    JAHEDSARAVANI A,MARHABAN M H,MASSINAEI M. Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks[J]. Minerals Engineering,2014,69:137-145. doi: 10.1016/j.mineng.2014.08.003
    [14]
    MORAR S H,BRADSHAW D J,HARRIS M C. The use of the froth surface lamellae burst rate as a flotation froth stability measurement[J]. Minerals Engineering,2012,36:152-159.
    [15]
    LIU Ze,LIN Yutong,CAO Yue,et al. Swin transformer:hierarchical vision transformer using shifted windows[C]. IEEE/CVF International Conference on Computer Vision,Montreal,2021:10012-10022.
    [16]
    CHENG Bowen,MISRA I,SCHWING A G,et al. Masked-attention mask transformer for universal image segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,2022:1290-1299.
    [17]
    KIRILLOV A,WU Yuxin,HE Kaiming,et al. PointRend:image segmentation as rendering[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:9796-9805.
    [18]
    SUN Jiaming,SHEN Zehong,WANG Yu'ang,et al. LoFTR:detector-free local feature matching with transformers[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:8918-8927.
    [19]
    ANKERST M,BREUNIG M M,KRIEGEL H P,et al. OPTICS:ordering points to identify the clustering structure[J]. ACM Sigmod Record,1999,28(2):49-60. doi: 10.1145/304181.304187
    [20]
    YUAN Yuhui,CHEN Xilin,WANG Jingdong. Object-contextual representations for semantic segmentation[C]. European Conference on Computer Vision,Glasgow,2020:173-190.
    [21]
    ZHAO Hengshuang,SHI Jianping,QI Xiaojuan,et al. Pyramid scene parsing network[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:6230-6239.
    [22]
    CHEN L C,ZHU Yukun,PAPANDREOU G,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. European Conference on Computer Vision,Munich,2018:801-818.
    [23]
    HUANG Zilong,WANG Xinggang,HUANG Lichao,et al. CCNet:criss-cross attention for semantic segmentation[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:603-612.
    [24]
    STRUDEL R,GARCIA R,LAPTEV I,et al. Segmenter:transformer for semantic segmentation[C]. IEEE/CVF International Conference on Computer Vision,Montreal,2021:7242-7252.
    [25]
    XIE Enze,WANG Wenhai,YU Zhiding,et al. SegFormer:simple and efficient design for semantic segmentation with transformers[C]. Conference and Workshop on Neural Information Processing Systems,2021:12077-12090.
    [26]
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2):91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [27]
    BAY H,ESS A,TUYTELAARS T,et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding,2008,110(3):346-359. doi: 10.1016/j.cviu.2007.09.014
    [28]
    MUJA M,LOWE D G. Fast approximate nearest neighbors with automatic algorithm configuration[C]. The 4th International Conference on Computer Vision Theory and Applications,Lisboa,2009:331-340.
    [29]
    OI L,LIU Wei,LIU Ding. ORB-based fast anti-viewing image feature matching algorithm[C]. Chinese Automation Congress,Xi'an,2018:2402-2406.
    [30]
    FISCHLER M A,BOLLES R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM,1981,24(6):381-395. doi: 10.1145/358669.358692
    [31]
    RUBLEE E,RABAUD V,KONOLIGE K,et al. ORB:an efficient alternative to SIFT or SURF[C]. International Conference on Computer Vision,Barcelona,2011:2564-2571.
    [32]
    BIAN Jiawang,LIN Wenyan,LIU Yun,et al. GMS:grid-based motion statistics for fast,ultra-robust feature correspondence[J]. International Journal of Computer Vision,2020,128(6):1580-1593. doi: 10.1007/s11263-019-01280-3
    [33]
    MICHAELIS C,MITZKUS B,GEIRHOS R,et al. Benchmarking robustness in object detection:autonomous driving when winter is coming[EB/OL]. [2024-02-25]. https://arxiv.org/abs/1907.07484v2.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (40) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return