Volume 50 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
ZHANG Zhixing, FU Xiang, ZHANG Xiaoqiang, et al. Automatic reasoning technology for coal mine industrial data AI models[J]. Journal of Mine Automation,2024,50(9):138-143.  doi: 10.13272/j.issn.1671-251x.18181
Citation: ZHANG Zhixing, FU Xiang, ZHANG Xiaoqiang, et al. Automatic reasoning technology for coal mine industrial data AI models[J]. Journal of Mine Automation,2024,50(9):138-143.  doi: 10.13272/j.issn.1671-251x.18181

Automatic reasoning technology for coal mine industrial data AI models

doi: 10.13272/j.issn.1671-251x.18181
  • Received Date: 2024-02-02
  • Rev Recd Date: 2024-09-27
  • Available Online: 2024-10-17
  • The automation of coal mine production processes has largely relied on artificial intelligence (AI) technology to analyze industrial data. However, AI models developed for single application scenarios prove inadequate for the complex environments in coal mining. Relying solely on distributed computing to process the input features of AI models has led to decreased application efficiency. To address these challenges, an automatic reasoning technology for AI models in coal mine industrial data was developed. The system architecture consisted of three layers: the data layer, the computation-driving layer, and the model reasoning layer. The data layer gathered and stored various types of monitoring data, supplying raw data to the computation-driving layer. The computation-driving layer converted this vast amount of raw data into input features for AI models tailored to coal mining applications. An automatic switching mechanism between two computational engines—based on the input feature values—intelligently selected either Spark-based distributed computing or Python-based local computing, depending on the data volume, thereby resolving the issues of slow processing speeds and high latency in large-scale data applications. In the model reasoning layer, the input features were fed into the AI models for reasoning. A collaborative reasoning mechanism, with multiple triggering methods—scheduled, manual, and feedback-triggered—was introduced to enhance the effectiveness of AI models in complex coal mining scenarios. The results demonstrate that this technology enables rapid calculation of input features for multiple AI models across different application scenarios, as well as fast, automatic, and collaborative reasoning.

     

  • loading
  • [1]
    王国法,庞义辉,任怀伟. 智慧矿山技术体系研究与发展路径[J]. 金属矿山,2022(5):1-9.

    WANG Guofa,PANG Yihui,REN Huaiwei. Research and development path of smart mine technology system[J]. Metal Mine,2022(5):1-9.
    [2]
    王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.
    [3]
    张建中,郭军. 智慧矿山工业互联网技术架构探讨[J]. 煤炭科学技术,2022,50(5):238-246.

    ZHANG Jianzhong,GUO Jun. Discussion on industrial Internet technology framework of smart mine[J]. Coal Science and Technology,2022,50(5):238-246.
    [4]
    付翔,秦一凡,李浩杰,等. 新一代智能煤矿人工智能赋能技术研究综述[J]. 工矿自动化,2023,49(9):122-131,139.

    FU Xiang,QIN Yifan,LI Haojie,et al. Summary of research on artificial intelligence empowerment technology for new generation intelligent coal mine[J]. Journal of Mine Automation,2023,49(9):122-131,139.
    [5]
    付翔,李浩杰,张锦涛,等. 综采液压支架中部跟机多模态人机协同控制系统[J]. 煤炭学报,2024,49(3):1717-1730.

    FU Xiang,LI Haojie,ZHANG Jintao,et al. Multimodal human-machine collaborative control system for hydraulic supports following the shearer in the middle range of fully mechanized mining face[J]. Journal of China Coal Society,2024,49(3):1717-1730.
    [6]
    贾思锋,付翔,王然风,等. 液压支架时空区域支护质量动态评价[J]. 工矿自动化,2022,48(10):26-33,81.

    JIA Sifeng,FU Xiang,WANG Ranfeng,et al. Dynamic evaluation of support quality of hydraulic support in space-time region[J]. Journal of Mine Automation,2022,48(10):26-33,81.
    [7]
    张锦涛,付翔,王然风,等. 智采工作面中部液压支架集群自动化后人工调控决策模型[J]. 工矿自动化,2022,48(10):20-25.

    ZHANG Jintao,FU Xiang,WANG Ranfeng,et al. Manual regulation and control decision model of middle hydraulic support cluster automation in the intelligent working face[J]. Journal of Mine Automation,2022,48(10):20-25.
    [8]
    付翔,王然风,赵阳升. 工作面支架液压系统仿真与稳压供液技术[J]. 煤炭学报,2018,43(5):1471-1478.

    FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Investigation of hydraulic system simulation and fluid feeding technology with steady pressure of working face supports[J]. Journal of China Coal Society,2018,43(5):1471-1478.
    [9]
    付翔,王然风,赵阳升. 液压支架群组跟机推进行为的智能决策模型[J]. 煤炭学报,2020,45(6):2065-2077.

    FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Intelligent decision-making model on the of hydraulic supports group advancing behavior to follow shearer[J]. Journal of China Coal Society,2020,45(6):2065-2077.
    [10]
    夏向学,晏涛,连会青,等. 基于改进DK算法的煤矿水害逃生三维仿真平台研究[J]. 煤炭技术,2022,41(10):203-206.

    XIA Xiangxue,YAN Tao,LIAN Huiqing,et al. Research on 3D simulation platform of coal mine water disaster escape based on improved DK algorithm[J]. Coal Technology,2022,41(10):203-206.
    [11]
    梁耍,王世博,谢洋,等. 基于LSTM的煤层厚度动态预测方法研究[J]. 煤炭科学技术,2021,49(增刊1):150-157.

    LIANG Shua,WANG Shibo,XIE Yang,et al. Study on dynamic prediction method of coal seam thickness based on LSTM[J]. Coal Science and Technology,2021,49(S1):150-157.
    [12]
    刘力涛,董淑棠. 基于BP神经网络的采煤机截割自适应调速控制[J]. 煤矿机械,2020,41(8):197-199.

    LIU Litao,DONG Shutang. Adaptive speed regulation control of shearer cutting based on BP neural network[J]. Coal Mine Machinery,2020,41(8):197-199.
    [13]
    王星,高峰,陈吉,等. 基于GAN网络的煤岩图像样本生成方法[J]. 煤炭学报,2021,46(9):3066-3078.

    WANG Xing,GAO Feng,CHEN Ji,et al. Generative adversarial networks based sample generation of coal and rock images[J]. Journal of China Coal Society,2021,46(9):3066-3078.
    [14]
    李波,丁剑明. 基于大数据分析的煤矿综采生产数据应用[J]. 煤矿机械,2017,38(8):170-172.

    LI Bo,DING Jianming. Application of fully mechanized mining data in coal mine based on large data analysis[J]. Coal Mine Machinery,2017,38(8):170-172.
    [15]
    乔伟,靳德武,王皓,等. 基于云服务的煤矿水害监测大数据智能预警平台构建[J]. 煤炭学报,2020,45(7):2619-2627.

    QIAO Wei,JIN Dewu,WANG Hao,et al. Development of big data intelligent early warning platform for coal mine water hazard monitoring based on cloud service[J]. Journal of China Coal Society,2020,45(7):2619-2627.
    [16]
    申琢,谭章禄. 基于数据挖掘的煤矿大数据可视化管理平台研究[J]. 中国煤炭,2016,42(12):86-89,128. doi: 10.3969/j.issn.1006-530X.2016.12.017

    SHEN Zhuo,TAN Zhanglu. Research on big data visual management platform of coal mine based on data mining[J]. China Coal,2016,42(12):86-89,128. doi: 10.3969/j.issn.1006-530X.2016.12.017
    [17]
    崔卫锋,田野,李旭,等. 煤矿综采工作面智能服务大数据决策平台[J]. 煤矿机械,2022,43(10):193-195.

    CUI Weifeng,TIAN Ye,LI Xu,et al. Intelligent service big data decision-making platform for fully mechanized mining face in coal mine[J]. Coal Mine Machinery,2022,43(10):193-195.
    [18]
    周江,王伟平,孟丹,等. 面向大数据分析的分布式文件系统关键技术[J]. 计算机研究与发展,2014,51(2):382-394. doi: 10.7544/issn1000-1239.2014.20120863

    ZHOU Jiang,WANG Weiping,MENG Dan,et al. Key technology in distributed file system towards big data analysis[J]. Journal of Computer Research and Development,2014,51(2):382-394. doi: 10.7544/issn1000-1239.2014.20120863
    [19]
    姚军,管米利,乔帆. 基于Spark的煤矿安全预警系统[J]. 现代电子技术,2022,45(12):49-54.

    YAO Jun,GUAN Mili,QIAO Fan. Coal-mine safety warning system based on Spark[J]. Modern Electronics Technique,2022,45(12):49-54.
    [20]
    吴海波,施式亮,念其锋. 基于Spark Streaming流回归的煤矿瓦斯浓度实时预测[J]. 中国安全生产科学技术,2017,13(5):84-89.

    WU Haibo,SHI Shiliang,NIAN Qifeng. Real-time prediction of gas concentration in coal mine based on Spark Streaming Linear Regression[J]. Journal of Safety Science and Technology,2017,13(5):84-89.
    [21]
    邵严. 不定期受控RS485总线通信方式在煤矿安全监控系统中的应用[J]. 煤矿安全,2020,51(7):117-120.

    SHAO Yan. Application of communication mode of irregularly controlled RS485 bus in monitoring system for coal mine safety[J]. Safety in Coal Mines,2020,51(7):117-120.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (23) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return