Citation: | CHENG Jian, SHI Linsong, LUO Yi, et al. Real time identification of microseismic events based on ridge regression improved normative variable analysis[J]. Journal of Mine Automation,2024,50(3):92-98. doi: 10.13272/j.issn.1671-251x.18170 |
[1] |
康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1-30.
KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1-30.
|
[2] |
窦林名,李振雷,何学秋. 厚煤层综放开采的降载减冲原理及其应用研究[J]. 中国矿业大学学报,2018,47(2):221-230.
DOU Linming,LI Zhenlei,HE Xueqiu. Principle of rockburst control by weakening static and dynamic loading using top-coal caving in the mining of thick coal seams[J]. Journal of China University of Mining & Technology,2018,47(2):221-230.
|
[3] |
CAO Anye,DOU Linming,WANG Changbin,et al. Microseismic precursory characteristics of rock burst hazard in mining areas near a large residual coal pillar:a case study from Xuzhuang Coal Mine,Xuzhou,China[J]. Rock Mechanics and Rock Engineering,2016,49(11):1-16.
|
[4] |
程健,杨凌凯,王全魁,等. 基于半监督过采样非平衡学习的矿山微震信号识别[J]. 煤炭科学技术,2018,46(2):213-218,202.
CHENG Jian,YANG Lingkai,WANG Quankui,et al. Mine microseismic signal recognition based on semi-supervised over-sampling imbalanced learning[J]. Coal Science and Technology,2018,46(2):213-218,202.
|
[5] |
程健,杨凌凯,崔宁,等. 基于流形嵌入过采样的非平衡数据分类方法[J]. 中国矿业大学学报,2018,47(6):1325-1333.
CHENG Jian,YANG Lingkai,CUI Ning,et al. A novel pattern classification method for imbalanced data set based on manifold embedded over-sampling[J]. Journal of China University of Mining & Technology,2018,47(6):1325-1333.
|
[6] |
HE Jiang,DOU Linming,GONG Siyuan,et al. Rock burst assessment and prediction by dynamic and static stress analysis based on micro-seismic monitoring[J]. International Journal of Rock Mechanics and Mining Sciences,2017,93:46-53. doi: 10.1016/j.ijrmms.2017.01.005
|
[7] |
魏立科,姜德义,王翀,等. 煤矿冲击地压灾害风险监察智能分析系统关键技术架构[J]. 煤炭学报,2021,46(增刊1):63-73.
WEI Like,JIANG Deyi,WANG Chong,et al. Key technological architecture of the intelligent monitoring-analysis system for coal mine rockburst risk supervision[J]. Journal of China Coal Society,2021,46(S1):63-73.
|
[8] |
WANG Shuren,LI Chunyang,YAN Wenfa,et al. Multiple indicators prediction method of rock burst based on microseismic monitoring technology[J]. Arabian Journal of Geosciences,2017,10(6). DOI: 10.1007/s12517-017-2946-8.
|
[9] |
姜耀东,赵毅鑫. 我国煤矿冲击地压的研究现状:机制、预警与控制[J]. 岩石力学与工程学报,2015,34(11):2188-2204.
JIANG Yaodong,ZHAO Yixin. State of the art:investigation on mechanism,forecast and control of coal bumps in China[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2188-2204.
|
[10] |
YU J J,BENTLY D E,GOLDMAN P,et al. Rolling element bearing defect detection and diagnostics using displacement transducers[J]. Journal of Engineering for Gas Turbines and Power,2002,124(3):517-527. doi: 10.1115/1.1456092
|
[11] |
BOURBON R,NGUEVEU S U,ROBOAM X,et al. Energy management optimization of a smart wind power plant comparing heuristic and linear programming methods[J]. Mathematics and Computers in Simulation,2019,158:418-431. doi: 10.1016/j.matcom.2018.09.022
|
[12] |
KAMRANI H,ZOLGHADREASLI A,MARKOPOULOS P,et al. Reduced-rank L1-norm principal-component analysis with performance guarantees[J]. IEEE Transactions on Signal Processing,2021,69:240-255. doi: 10.1109/TSP.2020.3039599
|
[13] |
PENG Kaixiang,ZHANG Kai,YOU Bo,et al. Quality-relevant fault monitoring based on efficient projection to latent structures with application to hot strip mill process[J]. IET Control Theory and Applications,2015,9(7):1135-1145. doi: 10.1049/iet-cta.2014.0732
|
[14] |
JIANG Benben,HUANG Dexian,ZHU Xiaoxiang,et al. Canonical variate analysis-based contributions for fault identification[J]. Journal of Process Control,2015,26:17-25. doi: 10.1016/j.jprocont.2014.12.001
|
[15] |
EVAN L R,RICHARD D B. Model reduction for the robustness margin computation of large scale uncertain systems[J]. Computers and Chemical Engineering,1998,22(7):913-926.
|
[16] |
BRANDOLINI-BUNLON M,MÉLANIE P,GAUDREAU P,et al. Multi-block PLS discriminant analysis for the joint analysis of metabolomic and epidemiological data[J]. Metabolomics,2019,15(10):1-9.
|
[17] |
LUO Lijia,PENG Xin,TONG Chudong. A multigroup framework for fault detection and diagnosis in large-scale multivariate systems[J]. Journal of Process Control,2021,100:65-79. doi: 10.1016/j.jprocont.2021.02.007
|
[18] |
HUANG Linzhe,CAO Yuping,TIAN Xuemin,et al. A nonlinear quality-relevant process monitoring method with Kernel input-output canonical variate analysis[J]. IFAC PapersOnline,2015,48(8):611-616. doi: 10.1016/j.ifacol.2015.09.035
|
[19] |
WANG Xuemei,WU Ping. Nonlinear dynamic process monitoring based on ensemble kernel canonical variate analysis and Bayesian inference[J]. ACS Omega,2022,7(22):18904-18921. doi: 10.1021/acsomega.2c01892
|
[20] |
CAI Jia,TANG Yi. A new randomized Kaczmarz based kernel canonical correlation analysis algorithm with applications to information retrieval[J]. Neural Networks,2018,98:178-191. doi: 10.1016/j.neunet.2017.11.013
|
[21] |
WITTEN D M,TIBSHIRANI R J. Extensions of sparse canonical correlation analysis with applications to genomic data[J]. Statistical Applications in Genetics and Molecular Biology,2009,8(1). DOI: 10.2202/1544-6115.1470.
|
[22] |
LU Qiugang,JIANG Benben,GOPALUNI R B,et al. Sparse canonical variate analysis approach for process monitoring[J]. Journal of Process Control,2018,71:90-102. doi: 10.1016/j.jprocont.2018.09.009
|
[23] |
ZHENG Jiale,ZHAO Chunhui. Enhanced canonical variate analysis with slow feature for dynamic process status analytics[J]. Journal of Process Control,2020,95:10-31. doi: 10.1016/j.jprocont.2020.09.005
|
[24] |
SUN Tingkai,CHEN Songcan. Locality preserving CCA with applications to data visualization and pose estimation[J]. Image and Vision Computing,2006,25(5):531-543.
|
[25] |
JIANG Benben,RICHARD D B. Fault detection of process correlation structure using canonical variate analysis-based correlation features[J]. Journal of Process Control,2017,58:131-138. doi: 10.1016/j.jprocont.2017.09.003
|