Volume 49 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WANG Bingchun. Design of high-resolution electrical monitoring system for mining[J]. Journal of Mine Automation,2023,49(10):118-126.  doi: 10.13272/j.issn.1671-251x.18101
Citation: WANG Bingchun. Design of high-resolution electrical monitoring system for mining[J]. Journal of Mine Automation,2023,49(10):118-126.  doi: 10.13272/j.issn.1671-251x.18101

Design of high-resolution electrical monitoring system for mining

doi: 10.13272/j.issn.1671-251x.18101
  • Received Date: 2023-04-06
  • Rev Recd Date: 2023-10-11
  • Available Online: 2023-10-24
  • The resistivity method is an important means for identifying, monitoring, and warning potential risks of coal mine water hazards, and also an important data source for transparency of mine geological information. When conducting underground electrical monitoring, the positioning precision of single roadway electrical profiling method or double roadway electrical perspective method for water rich areas is not high. In addition, due to the increasingly strong electromagnetic interference generated by large-scale electrical equipment, traditional electrical monitoring equipment is difficult to obtain effective data. In order to solve the above problems, a high-resolution electrical monitoring system for mining has been designed. The system can automatically collect data from single roadway electrical profile method and double roadway electrical perspective method in real-time during the mining process. The system uses two types of observation data for constrained inversion imaging, improving the imaging resolution of low resistance anomalous bodies. A two-stage amplification and power frequency filtering circuit is designed to configure different sampling timing, sampling frequency, and digital filters during the collection of electrical profile and perspective data. It will suppress the interference of large-scale electrical equipment on electrical response signals. The performance test results show that the high-resolution electrical monitoring system for mining can effectively distinguish 1 µV target signal in noisy environments. The power frequency suppression ratio is not less than 35 dB and 80 dB in the electric perspective mode and electric profile mode, respectively. The results of the physical simulation test in the water tank indicate that the system can effectively distinguish low resistance anomalous bodies with a size of approximately 10 m3 at a depth of 60 meters below the floor when the working face is inclined towards about 300 meters. The test and experimental results have verified that the system has strong power frequency interference and random interference suppression capabilities. The system can obtain reliable and effective data under limited observation space and strong interference conditions in coal mines, improving the imaging resolution of abnormal bodies in inversion results.

     

  • loading
  • [1]
    王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
    [2]
    尹尚先,连会青,刘德民,等. 华北型煤田岩溶陷落柱研究70年:成因·机理·防治[J]. 煤炭科学技术,2019,47(11):1-29. doi: 10.13199/j.cnki.cst.2019.11.001

    YIN Shangxian,LIAN Huiqing,LIU Demin,et al. 70 years of investigation on karst collapse column in North China Coalfield:cause of origin,mechanism and prevention[J]. Coal Science and Technology,2019,47(11):1-29. doi: 10.13199/j.cnki.cst.2019.11.001
    [3]
    董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21-31. doi: 10.3969/j.issn.1001-1986.2021.01.003

    DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21-31. doi: 10.3969/j.issn.1001-1986.2021.01.003
    [4]
    王国法,富佳兴,孟令宇. 煤矿智能化创新团队建设与关键技术研发进展[J]. 工矿自动化,2022,48(12):1-15. doi: 10.13272/j.issn.1671-251x.18060

    WANG Guofa,FU Jiaxing,MENG Lingyu. Development of innovation team construction and key technology research in coal mine intelligence[J]. Journal of Mine Automation,2022,48(12):1-15. doi: 10.13272/j.issn.1671-251x.18060
    [5]
    刘斌,李术才,李树忱,等. 电阻率层析成像法监测系统在矿井突水模型试验中的应用[J]. 岩石力学与工程学报,2010,29(2):297-307.

    LIU Bin,LI Shucai,LI Shuchen,et al. Application of electrical resistivity tomography monitoring system to mine water inrush model test[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(2):297-307.
    [6]
    张平松,刘盛东,吴荣新,等. 采煤面覆岩变形与破坏立体电法动态测试[J]. 岩石力学与工程学报,2009,28(9):1870-1875. doi: 10.3321/j.issn:1000-6915.2009.09.019

    ZHANG Pingsong,LIU Shengdong,WU Rongxin,et al. Dynamic detection of overburden deformation and failure in mining workface by 3D resistivity method[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1870-1875. doi: 10.3321/j.issn:1000-6915.2009.09.019
    [7]
    刘树才,刘鑫明,姜志海,等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报,2009,28(2):348-356. doi: 10.3321/j.issn:1000-6915.2009.02.019

    LIU Shucai,LIU Xinming,JIANG Zhihai,et al. Research on electrical prediction for evaluating water conducting fracture zones in coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):348-356. doi: 10.3321/j.issn:1000-6915.2009.02.019
    [8]
    张玉军,张志巍,肖杰,等. 承压水体上煤层底板下位隐伏断层采动突水机制研究[J]. 煤炭科学技术,2023,51(2):283-291. doi: 10.13199/j.cnki.cst.2022-1698

    ZHANG Yujun,ZHANG Zhiwei,XIAO Jie,et al. Study on mining water inrush mechanism of buried fault under coal seam floor above confined water body[J]. Coal Science and Technology,2023,51(2):283-291. doi: 10.13199/j.cnki.cst.2022-1698
    [9]
    李建楼,刘盛东,张平松,等. 并行网络电法在煤层覆岩破坏监测中的应用[J]. 煤田地质与勘探,2008,36(2):61-64. doi: 10.3969/j.issn.1001-1986.2008.02.016

    LI Jianlou,LIU Shengdong,ZHANG Pingsong,et al. Failure dynamic observation of upper covered stratum under mine using parallel network electricity method[J]. Coal Geology & Exploration,2008,36(2):61-64. doi: 10.3969/j.issn.1001-1986.2008.02.016
    [10]
    鲁晶津,王冰纯,李德山,等. 矿井电阻率法监测系统在采煤工作面水害防治中的应用[J]. 煤田地质与勘探,2022,50(1):36-44. doi: 10.12363/issn.1001-1986.21.10.0596

    LU Jingjin,WANG Bingchun,LI Deshan,et al. Application of mine-used resistivity monitoring system in working face water disaster control[J]. Coal Geology & Exploration,2022,50(1):36-44. doi: 10.12363/issn.1001-1986.21.10.0596
    [11]
    鲁晶津,王冰纯,颜羽. 矿井电法在煤层采动破坏和水害监测中的应用进展[J]. 煤炭科学技术,2019,47(3):18-26. doi: 10.13199/j.cnki.cst.2019.03.003

    LU Jingjin,WANG Bingchun,YAN Yu. Advances of mine electrical resistivity method applied in coal seam mining destruction and water inrush monitoring[J]. Coal Science and Technology,2019,47(3):18-26. doi: 10.13199/j.cnki.cst.2019.03.003
    [12]
    鲁晶津. 直流电阻率法在煤层底板水害监测中的应用研究[J]. 工矿自动化,2021,47(2):18-25. doi: 10.13272/j.issn.1671-251x.2020080070

    LU Jingjin. Research on the application of direct current resistivity method in coal seam floor water inrush monitoring[J]. Industry and Mine Automation,2021,47(2):18-25. doi: 10.13272/j.issn.1671-251x.2020080070
    [13]
    靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256-2264. doi: 10.13225/j.cnki.jccs.ZN20.0309

    JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256-2264. doi: 10.13225/j.cnki.jccs.ZN20.0309
    [14]
    鲁晶津. 工作面采动破坏过程电阻率动态响应特征研究[J]. 工矿自动化,2023,49(1):36-45,108.

    LU Jingjin. Study on dynamic response characteristics of resistivity in mining failure process of working face[J]. Journal of Mine Automation,2023,49(1):36-45,108.
    [15]
    王家臣,许延春,徐高明,等. 矿井电剖面法探测工作面底板破坏深度的应用[J]. 煤炭科学技术,2010,38(1):97-100. doi: 10.13199/j.cst.2010.01.102.wangjch.027

    WANG Jiachen,XU Yanchun,XU Gaoming,et al. Application of mine electric profiling method to detect floor failure depth of coal mining face[J]. Coal Science and Technology,2010,38(1):97-100. doi: 10.13199/j.cst.2010.01.102.wangjch.027
    [16]
    张平松,凡净,吴荣新,等. 大倾角煤层工作面底板岩层富水异常区探查方法研究[J]. 采矿与安全工程学报,2015,32(4):639-643. doi: 10.13545/j.cnki.jmse.2015.04.019

    ZHANG Pingsong,FAN Jing,WU Rongxin,et al. Study on detection method of anomaly watery area for the floor rock stratum of the working face with high dip angle[J]. Journal of Mining & Safety Engineering,2015,32(4):639-643. doi: 10.13545/j.cnki.jmse.2015.04.019
    [17]
    吴荣新,刘盛东,张平松. 双巷并行三维电法探测煤层工作面底板富水区[J]. 煤炭学报,2010,35(3):454-457. doi: 10.13225/j.cnki.jccs.2010.03.017

    WU Rongxin,LIU Shengdong,ZHANG Pingsong. The exploration of two-gateways parallel 3-D electrical technology for water-rich area within coal face floor[J]. Journal of China Coal Society,2010,35(3):454-457. doi: 10.13225/j.cnki.jccs.2010.03.017
    [18]
    胡雄武,孟当当,张平松,等. 采煤工作面底板水视电阻率全方位探测方法[J]. 煤炭学报,2019,44(8):2369-2376. doi: 10.13225/j.cnki.jccs.KJ19.0581

    HU Xiongwu,MENG Dangdang,ZHANG Pingsong,et al. An all-directional detection method of apparent resistivity for water from the floor strata of coal-mining face[J]. Journal of China Coal Society,2019,44(8):2369-2376. doi: 10.13225/j.cnki.jccs.KJ19.0581
    [19]
    GB/T 3836.4—2021爆炸性环境 第4部分:由本质安全型“i”保护的设备[S

    GB/T 3836.4-2021 Explosive atmospheres-Part 4:Equipment protection by intrinsic safety “i”[S
    [20]
    廖志强,陈东春,刘水文. 煤矿井下电磁干扰源及抗干扰技术研究[J]. 工矿自动化,2012,38(7):25-28.

    LIAO Zhiqiang,CHEN Dongchun,LIU Shuiwen. Research of underground electromagnetic interference sources and anti-interference technology[J]. Industry and Mine Automation,2012,38(7):25-28.
    [21]
    邹哲强,庄捷,屈世甲. 煤矿井下中低频段电磁干扰测量与分析[J]. 工矿自动化,2013,39(5):1-5. doi: 10.7526/j.issn.1671-251X.2013.05.001

    ZOU Zheqiang,ZHUANG Jie,QU Shijia. Measurement and analysis of underground electromagnetic interference of medium and low frequency band[J]. Industry and Mine Automation,2013,39(5):1-5. doi: 10.7526/j.issn.1671-251X.2013.05.001
    [22]
    鲁晶津,王云宏,崔伟雄,等. 矿井水害音频电透视法监测水槽物理模拟试验研究[J/OL]. 煤炭科学技术:1-10 [2023-03-11]. DOI: 10.13199/j.cnki.cst.2022-1354.

    LU Jingjin,WANG Yunhong,CUI Weixiong,et al. Study on physical simulation of mine water disaster monitoring by audio frequency electrical resistivity perspective method in water tank[J/OL]. Coal Science and Technology:1-10 [2023-03-11]. DOI: 10.13199/j.cnki.cst.2022-1354.
    [23]
    李博凡,刘磊,范涛,等. 煤矿井下定向钻孔中电阻率探测技术与应用[J]. 煤田地质与勘探,2022,50(1):52-58. doi: 10.12363/issn.1001-1986.21.11.0688

    LI Bofan,LIU Lei,FAN Tao,et al. Resistivity detection and its application in underground coal mine directional boreholes[J]. Coal Geology & Exploration,2022,50(1):52-58. doi: 10.12363/issn.1001-1986.21.11.0688
    [24]
    徐聪辉,李彩,张振昭. ADS1262多通道数据采集系统设计[J]. 中国测试,2019,45(9):112-117. doi: 10.11857/j.issn.1674-5124.2018120088

    XU Conghui,LI Cai,ZHANG Zhenzhao. Design of multi-channel data acquisition system based on ADS1262[J]. China Measurement & Test,2019,45(9):112-117. doi: 10.11857/j.issn.1674-5124.2018120088
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (192) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return