Volume 48 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LIANG Weifeng, SUN Jiping, PENG Ming, et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128, 163.  doi: 10.13272/j.issn.1671-251x.18045
Citation: LIANG Weifeng, SUN Jiping, PENG Ming, et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128, 163.  doi: 10.13272/j.issn.1671-251x.18045

Research on safe power threshold of radio wave explosion-proof in coal mine

doi: 10.13272/j.issn.1671-251x.18045
  • Received Date: 2022-10-14
  • Rev Recd Date: 2022-12-14
  • Available Online: 2022-12-23
  • In order to prevent gas explosion caused by radio waves emitted by wireless equipment in the coal mine, the power and energy of radio waves in coal mines should be limited. This paper introduces the safety power threshold of continuous radio wave explosion-proof specified in different standards. ① GB/T 3836.1-2021 Explosive atmospheres-Part 1: Equipment-General requirements and the international standard IEC 60079-0:2017 Explosive atmospheres-Part 0: Equipment-General requirements refer to the European standard CLC/TR 50427:2004 Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation-Guide. When there is no slender structure object (such as a crane) that can be used as a receiving antenna in an explosive environment, the clause that the explosion-proof safety power threshold of continuous radio wave in Class I environment (representative gas is methane) is 8 W is omitted. It is indiscriminately stipulated that the safe power threshold of continuous radio wave explosion-proof in Class I environment is 6 W. ② The British Standard BS 6656:1991 Guide to prevention of inadvertent ignition of flammable atmospheres by radio-frequency radiation specifies that for continuous radio-wave operating frequencies greater than 30 MHz in a Class I environment, the safe power threshold for continuous radio-wave explosion-proof is 8 W, Whether there is a crane or other slender annular structure object. ③ The British Standard BS 6656:2002 Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation - Guide and the European Standard CLC/TR 50427:2004 both specify a safety power threshold of 8 W for continuous radio-wave explosion-proof in Class I environments without slender annular structures such as cranes. The safe power threshold of continuous radio wave explosion-proof in Class I environment with slender annular structures such as cranes is 6 W. The characteristic of the underground environment and equipment in the coal mine are analyzed. Generally, there is no crane underground. The underground coal mine is a confined space, with a long roadway but a small roadway section. Cable, water pipe, rail, steel wire rope, overhead line, tape rack and other axial conductors laid along the roadway axis are thin and long, but will not form a ring antenna conducive to radio wave reception. Transverse conductors such as roadway I-beam support can form a ring antenna conducive to radio wave reception. However, the section of the I-steel conductor is large, which does not meet the characteristics of slender structure. The hydraulic support in the fully mechanized working face can form an annular structure. However, the hydraulic support jack divides it into multiple annular structures. The support conductor section is large, which does not meet the characteristics of slender structure. It is pointed out that before the explosion-proof safety power threshold of continuous radio wave in coal mine is implemented to 6 W, the mine wireless communication systems such as leakage, induction, through-the-ground and multi-base stations have been widely used in the coal mine. And there is no case of gas and coal dust explosion accident. Therefore, the threshold of explosion-proof safety power of radio wave in the coal mine is set as 6 W without distinction, which lacks of theoretical analysis and experimental verification. In particular, 5G, WiFi 6, UWB, ZigBee and other mining mobile communication systems and personnel and vehicle positioning system working frequency is higher. Therefore, the coal mine continuous radio wave explosion-proof safety power threshold should be 8 W.

     

  • loading
  • [1]
    EXCELL P S, BUTCHER G H, HOWSON D P. Towards a safety standard for radiofrequency hazards to flammable mixtures—progress and problems[C]. IEEE International Symposium on Electromagnetic Compatibility, San Diego, 1979: 1-5.
    [2]
    BURSTOW D J,LOVELAND R J,TOMLINSON R,et al. Radio frequency ignition hazards[J]. Radio and Electronic Engineer,1981,51(4):151-169. doi: 10.1049/ree.1981.0021
    [3]
    HOWSON D P,EXCELL P S,BUTCHER G H. Ignition of flammable gas/air mixtures by sparks from 2 MHz and 9 MHz sources[J]. Radio and Electronic Engineer,1981,51(4):170-174. doi: 10.1049/ree.1981.0022
    [4]
    ROSENFELD J L J,STRACHAN D C,TROMANS P S,et al. Experiments on the incendivity of radio-frequency,breakflash discharges (1.8-21 MHz c. w. )[J]. Radio and Electronic Engineer,1981,51(4):175-186. doi: 10.1049/ree.1981.0023
    [5]
    MADDOCKS A J,JACKSON G A. Measurements of radio frequency voltage and power induced in structures on the St Fergus gas terminals[J]. Radio and Electronic Engineer,1981,51(4):187-194. doi: 10.1049/ree.1981.0024
    [6]
    ROBERTSON S S J,LOVELAND R J. Radio-frequency ignition hazards:a review[J]. Physical Science,Measurement and Instrumentation,Management and Education-Reviews,IEE Proceedings A,1981,128(9):607-614.
    [7]
    EXCELL P S,MADDOCKS A J. Assessment of worst-case receiving antenna characteristics of metallic industrial structures. Part 1:Electrically-small structures[J]. Journal of the Institution of Electronic and Radio Engineers,1986,56(1):27-32. doi: 10.1049/jiere.1986.0006
    [8]
    EXCELL P S,HOWSON D P. Assessment of worst-case receiving antenna characteristics of metallic industrial structures. Part 2:Electrically-large structures[J]. Journal of the Institution of Electronic and Radio Engineers,1986,56(1):33-36. doi: 10.1049/jiere.1986.0008
    [9]
    JAMES R A,EXCELL P S,KELLER A Z. Probabilistic factors in radio-frequency ignition and detonation hazards analyses[J]. Reliability Engineering,1987,17(2):139-153. doi: 10.1016/0143-8174(87)90012-6
    [10]
    EXCELL P S,JAMES R A,KELLER A Z. Strategic problems in the drafting and implementation of safety guides for the prevention of radio frequency radiation hazards[J]. International Journal of Quality & Reliability Management,1988,5(5):47-61.
    [11]
    孙继平,贾倪. 矿井电磁波能量安全性研究[J]. 中国矿业大学学报,2013,42(6):1002-1008. doi: 10.3969/j.issn.1000-1964.2013.06.018

    SUN Jiping,JIA Ni. Safety study of electromagnetic wave energy in coal mine[J]. Journal of China University of Mining & Technology,2013,42(6):1002-1008. doi: 10.3969/j.issn.1000-1964.2013.06.018
    [12]
    刘晓阳,马新彦,刘坤,等. 矿井5G电磁波辐射能量安全性研究[J]. 工矿自动化,2021,47(7):85-91. doi: 10.13272/j.issn.1671-251x.2020090050

    LIU Xiaoyang,MA Xinyan,LIU Kun,et al. Research on the safety of 5G electromagnetic wave radiation energy in coal mine[J]. Industry and Mine Automation,2021,47(7):85-91. doi: 10.13272/j.issn.1671-251x.2020090050
    [13]
    MENG Jijian. Research on wireless power transmission in coal mine based on explosion-proof safety[C]. IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference, Chongqing, 2021: 1700-1704.
    [14]
    郑小磊,梁宏. 煤矿5G通信系统安全技术要求和检验方法[J]. 工矿自动化,2021,47(3):9-13,33. doi: 10.13272/j.issn.1671-251x.2021010066

    ZHENG Xiaolei,LIANG Hong. Safety technical requirements and inspection methods of coal mine 5G communication system[J]. Industry and Mine Automation,2021,47(3):9-13,33. doi: 10.13272/j.issn.1671-251x.2021010066
    [15]
    张勇. 煤矿井下无线射频近场谐振耦合防爆电磁能仿真分析[J]. 煤矿安全,2022,53(8):134-138. doi: 10.13347/j.cnki.mkaq.2022.08.021

    ZHANG Yong. Simulation analysis of explosion-proof electromagnetic energy coupled with radio frequency near field resonance in underground coal mine[J]. Safety in Coal Mines,2022,53(8):134-138. doi: 10.13347/j.cnki.mkaq.2022.08.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(6)

    Article Metrics

    Article views (1333) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return