双悬臂截割机器人相对动力学建模与力位混合控制研究
On the relative dynamics and control of dual-arm cutting robots for a coal mine
-
摘要: 随着我国矿山开采规模的扩大,传统单臂掘进机在截割大尺寸断面时,掘进和支护工作在时间上连续,但是在空间上分离,这导致单臂掘进机需要频繁移机以完成大断面截割,最终导致大断面无法一次成形,工序复杂。为解决单臂掘进机在大断面成形时效率低下的难题,本文提出了双悬臂截割机器人系统,并设计了一种基于机器人相对动力学模型的力位混合控制系统。首先,对双悬臂截割机器人进行运动学和动力学建模,将机器人的相对雅可比矩阵与虚位移与虚功原理相结合,推导出机器人的相对动力学模型,通过单一变量实现同时描述机器人双臂的运动状态,将机器人两臂独立的动力学模型整合为一个整体;其次,基于机器人的相对动力学模型,设计了闭环的相对力位置混合控制系统,并利用李雅普诺夫准则证明了控制系统的稳定性;最后,对相对力位混合控制系统进行仿真。结果表明,该相对力位置混合控制系统能够完成对期望相对位置和期望相对力的同步跟踪,两末端截割头对期望位置跟踪的绝对误差为0.3132m,均方根误差为0.1447m,由此实现双臂对煤岩的截割,对双悬臂截割机器人的建模及控制研究具有一定参考价值。Abstract: With the expansion of mining operations in China, traditional single-arm tunneling machines face challenges in cutting large-sized cross-sections. The tunneling and supporting operations are at the same position in space but they are separated in time, requiring frequent machine repositioning to complete the cutting of large sections. This inefficiency results in complex procedures and prevents the formation of large sections in a single operation. To address the inefficiencies in forming large sections with single-arm tunneling machines, this paper proposes a dual-arm cutting robot system and designs a hybrid force-position control system based on the robot’s relative dynamics model. Firstly, the kinematics and dynamics of the dual-arm cutting robot are modeled by integrating the robot’s relative Jacobian matrix with principles of virtual displacement and virtual work. The relative dynamic model of the robot is derived, where the motion states of the robot’s dual arms are simultaneously described by a single variable, integrating the independent dynamic models of the robot’s two arms into a unified whole. Secondly, based on the relative dynamic model of the robot, a closed-loop relative force-position hybrid control system is designed, and the stability of the control system is verified by using Lyapunov’s criterion. Finally, simulation of the relative force-position hybrid control system is performed. The results indicate that the relative force-position hybrid control system can achieve synchronous tracking of desired relative position and desired relative force. The absolute error of end-effectors in tracking desired position is 0.3132 meters with a root mean square error of 0.1447 meters, thereby enabling the dual arms to shear coal and rock. This research on modeling and control of dual-arm cutting robots offers valuable reference for similar studies.
点击查看大图
计量
- 文章访问数: 8
- HTML全文浏览量: 1
- 被引次数: 0