留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压气体致裂煤岩孔壁应变响应特征研究

孔子幸 马衍坤 杨发德 王小岐 龚立强 江明锋

孔子幸,马衍坤,杨发德,等. 高压气体致裂煤岩孔壁应变响应特征研究[J]. 工矿自动化,2024,50(10):105-111.  doi: 10.13272/j.issn.1671-251x.2024090009
引用本文: 孔子幸,马衍坤,杨发德,等. 高压气体致裂煤岩孔壁应变响应特征研究[J]. 工矿自动化,2024,50(10):105-111.  doi: 10.13272/j.issn.1671-251x.2024090009
KONG Zixing, MA Yankun, YANG Fade, et al. Study on the strain response characteristics of coal and rock borehole walls under high-pressure gas fracturing[J]. Journal of Mine Automation,2024,50(10):105-111.  doi: 10.13272/j.issn.1671-251x.2024090009
Citation: KONG Zixing, MA Yankun, YANG Fade, et al. Study on the strain response characteristics of coal and rock borehole walls under high-pressure gas fracturing[J]. Journal of Mine Automation,2024,50(10):105-111.  doi: 10.13272/j.issn.1671-251x.2024090009

高压气体致裂煤岩孔壁应变响应特征研究

doi: 10.13272/j.issn.1671-251x.2024090009
基金项目: 云南省重点研发项目(202303AA080014);深井瓦斯抽采与围岩控制技术国家地方联合工程实验室开放基金资助项目(SJF2203);安徽省高校杰出青年科研项目(2024AH020001)。
详细信息
    作者简介:

    孔子幸(1999—),男,安徽合肥人,硕士研究生,主要研究方向为煤岩动力灾害防治,E-mail:2118923465@qq.com

    通讯作者:

    马衍坤(1985—),男,山东肥城人,教授,博士,主要研究方向为煤岩动力灾害防治,E-mail:Kzxfun@163.com

  • 中图分类号: TD712.7

Study on the strain response characteristics of coal and rock borehole walls under high-pressure gas fracturing

  • 摘要: 目前缺乏对空气致裂全过程进行精准监测和评价的手段,而应变监测能够实时记录裂纹萌生和扩展的过程。通过研究高压气体冲击全过程中孔壁的应变响应,可明确致裂过程裂纹与应变响应之间的关系,获得最优致裂角度。为了探寻高压气体致裂煤岩体过程中裂纹和与应变之间的关系,利用高压气体冲击致裂煤岩体真三轴实验系统,开展了5种冲击角度(0,30,45,60,90°)下的高压气体致裂实验,研究了气体致裂过程中煤岩体裂缝形态、气压曲线与孔壁应变响应特征。实验结果表明:① 随着冲击角度增加,煤岩体裂缝形态呈现先复杂后单一的分布特征。② 致裂过程中气压呈现上升、陡降、聚集、稳定释放4个阶段。③ 孔壁应变数据主要由拉应变组成,应变曲线出现2个明显峰值,第1个峰值在气压曲线达到峰值0.1 s后出现并伴随主裂纹产生,第2个峰值常伴随着主裂纹的衍生与扩展。④ 当冲击角度为45°时,试件内部容易萌生复杂裂纹网络,致裂效果最佳。

     

  • 图  1  试件和致裂管

    Figure  1.  Test specimen and fracturing tube

    图  2  高压气体致裂煤岩实验系统

    Figure  2.  High pressure gas fracturing coal and rock experimental system

    图  3  试件三轴应力

    Figure  3.  Triaxial stress of specimen

    图  4  应变片位置

    Figure  4.  Strain gauge position

    图  5  不同冲击角度下试件破坏形态

    Figure  5.  Specimen damage morphology under different impact angles

    图  6  不同冲击角度下气压曲线

    Figure  6.  Pressure curves under different impact angles

    图  7  不同冲击角度下致裂过程应变变化

    Figure  7.  Strain variation during fracturing under different impact angles

    图  8  不同冲击角度下的应变响应

    Figure  8.  Strain response under different impact angles

    图  9  应变持续时间与拉应变峰值

    Figure  9.  Duration of strain and peak tensile strain

    表  1  高压气体致裂煤岩实验结果

    Table  1.   Experimental results of high-pressure gas fracturing of coal and rock

    组号 冲击
    角度/(°)
    起裂
    压力/MPa
    裂缝总长
    度/cm
    裂缝最大宽
    度/mm
    1 0 14.11 43.50 2.5
    2 30 12.95 65.76 3.2
    3 45 11.64 102.50 6.4
    4 60 13.08 86.40 4.3
    5 90 12.20 80.30 5.5
    下载: 导出CSV
  • [1] 袁亮,王恩元,马衍坤,等. 我国煤岩动力灾害研究进展及面临的科技难题[J]. 煤炭学报,2023,48(5):1825-1845.

    YUAN Liang,WANG Enyuan,MA Yankun,et al. Research progress of coal and rock dynamic disasters and scientific and technological problems in China[J]. Journal of China Coal Society,2023,48(5):1825-1845.
    [2] 李全贵,翟成,林柏泉,等. 定向水力压裂技术研究与应用[J]. 西安科技大学学报,2011,31(6):735-739.

    LI Quangui,ZHAI Cheng,LIN Baiquan,et al. Research and application of directional hydraulic fracturing technology[J]. Journal of Xi'an University of Science and Technology,2011,31(6):735-739.
    [3] 刘明举,孔留安,郝富昌,等. 水力冲孔技术在严重突出煤层中的应用[J]. 煤炭学报,2005,30(4):451-454. doi: 10.3321/j.issn:0253-9993.2005.04.010

    LIU Mingju,KONG Liu'an,HAO Fuchang,et al. Application of hydraulic flushing technology in severe outburst coal[J]. Journal of China Coal Society,2005,30(4):451-454. doi: 10.3321/j.issn:0253-9993.2005.04.010
    [4] 王耀锋,李艳增. 预置导向槽定向水力压穿增透技术及应用[J]. 煤炭学报,2012,37(8):1326-1331.

    WANG Yaofeng,LI Yanzeng. Technology and application of directional hydraulic penetration permeability improvement by guided groove[J]. Journal of China Coal Society,2012,37(8):1326-1331.
    [5] 翟成,李贤忠,李全贵. 煤层脉动水力压裂卸压增透技术研究与应用[J]. 煤炭学报,2011,36(12):1996-2001.

    ZHAI Cheng,LI Xianzhong,LI Quangui. Research and application of coal seam pulse hydraulic fracturing technology[J]. Journal of China Coal Society,2011,36(12):1996-2001.
    [6] 题正义,陈波. 亭南煤矿液态CO2致裂巷道卸压技术的应用研究[J]. 金属矿山,2019(4):48-52.

    TI Zhengyi,CHEN Bo. Application of pressure relief technology of liquid CO2 fracturing roadway in Tingnan Coal Mine[J]. Metal Mine,2019(4):48-52.
    [7] 吕进国,李守国,赵洪瑞,等. 高地应力条件下高压空气爆破卸压增透技术实验研究[J]. 煤炭学报,2019,44(4):1115-1128.

    LYU Jinguo,LI Shouguo,ZHAO Hongrui,et al. Technology of pressure relief and permeability enhancement with high pressure air blasting under high geo-stress[J]. Journal of China Coal Society,2019,44(4):1115-1128.
    [8] 梁卫国,贺伟,阎纪伟. 超临界CO2致煤岩力学特性弱化与破裂机理[J]. 煤炭学报,2022,47(7):2557-2568.

    LIANG Weiguo,HE Wei,YAN Jiwei. Weakening and fracturing mechanism of mechanical properties of coal and rock caused by supercritical CO2[J]. Journal of China Coal Society,2022,47(7):2557-2568.
    [9] 杜梦琳. 煤体液氮致裂损伤演化规律及增透机理研究[D]. 徐州:中国矿业大学,2023.

    DU Menglin. Research on the evolution law and permeability enhancement mechanism of coal liquid nitrogen induced cracking damage[D]. Xuzhou:China University of Mining and Technology,2023.
    [10] 王雁冰,付代睿,李杨,等. 不同耦合介质爆破裂纹动态扩展特性研究[J]. 力学与实践,2023,45(5):1021-1032.

    WANG Yanbing,FU Dairui,LI Yang,et al. Study on dynamic propagation characteristics of blasting cracks in different coupling media[J]. Mechanics in Engineering,2023,45(5):1021-1032.
    [11] 李宁,陈莉静,张平. 爆生气体驱动岩石裂缝动态扩展分析[J]. 岩土工程学报,2006,28(4):460-463. doi: 10.3321/j.issn:1000-4548.2006.04.007

    LI Ning,CHEN Lijing,ZHANG Ping. Dynamic analysis for fracturing progress by detonation gas[J]. Chinese Journal of Geotechnical Engineering,2006,28(4):460-463. doi: 10.3321/j.issn:1000-4548.2006.04.007
    [12] 李守国. 高压空气爆破煤层增透关键技术与装备研发[J]. 煤炭科学技术,2015,43(2):92-95.

    LI Shouguo. Key technology and equipment research and development of improving coal seam permeability by high pressure air blasting[J]. Coal Science and Technology,2015,43(2):92-95.
    [13] 李守国,吕进国,贾宝山,等. 高压空气爆破低透气性煤层增透技术应用研究[J]. 中国安全科学学报,2016,26(4):119-125.

    LI Shouguo,LYU Jinguo,JIA Baoshan,et al. Anti-reflection technology application study of high pressure air blasting low permeability coal seam[J]. China Safety Science Journal,2016,26(4):119-125.
    [14] 曾范永. 煤体高压气体爆破致裂规律的实验研究[J]. 煤矿安全,2019,50(1):13-16.

    ZENG Fanyong. Experimental study on cracking laws of high pressure gas explosion in coal[J]. Safety in Coal Mines,2019,50(1):13-16.
    [15] 严少洋,高富强,杨小林,等. 高压空气爆破作用下煤体裂纹扩展及振动特性模拟试验研究[J/OL]. 爆破:1-12[2024-08-24]. http://kns.cnki.net/kcms/ detail/42.1164.TJ.20240621.1455.004.html.

    YAN Shaoyang,GAO Fuqiang,YANG Xiaolin,et al. Simulated experimental study on crack extension and vibration characteristics of coal body under the action of high-pressure air blasting[J/OL]. Blasting:1-12[2024-08-24]. http://kns.cnki.net/kcms/detail/42.1164.TJ.20240621.1455.004.html.
    [16] 褚怀保,王昌,杨小林,等. 煤体高压空气爆破模拟试验研究[J]. 振动与冲击,2022,41(20):54-60,157.

    CHU Huaibao,WANG Chang,YANG Xiaolin,et al. A simulation experimental study on high-pressure air blasting of coal[J]. Journal of Vibration and Shock,2022,41(20):54-60,157.
    [17] 刘勇,何岸,魏建平,等. 高压气体射流破煤应力波效应分析[J]. 煤炭学报,2016,41(7):1694-1700.

    LIU Yong,HE An,WEI Jianping,et al. Analysis of stress wave effect during coal breakage process by high pressure gas jet[J]. Journal of China Coal Society,2016,41(7):1694-1700.
    [18] 刘勇,张涛,魏建平,等. 磨料形状对磨料气体射流冲蚀性能的影响研究[J]. 中国安全生产科学技术,2017,13(11):117-122.

    LIU Yong,ZHANG Tao,WEI Jianping,et al. Research on influence of abrasive shape on erosion performance of abrasive gas jet[J]. Journal of Safety Science and Technology,2017,13(11):117-122.
    [19] SHANG Zheng,WANG Haifeng,LI Bing,et al. Fracture processes in coal measures strata under liquid CO2 phase transition blasting[J]. Engineering Fracture Mechanics,2021,254. DOI:10.1016/j.engfracmech. 2021.107902.
    [20] CAI Can,KANG Yong,WANG Xiaochuan,et al. Experimental study on shale fracturing enhancement by using multi-times pulse supercritical carbon dioxide (SC-CO2) jet[J]. Journal of Petroleum Science and Engineering,2019,178:948-963. doi: 10.1016/j.petrol.2019.04.009
    [21] CAI Can,KANG Yong,YANG Yinxin,et al. Experimental investigation on flow field and induced strain response during SC-CO2 jet fracturing[J]. Journal of Petroleum Science and Engineering,2020,195. DOI: 10.1016/j.petrol.2020.107795.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  12
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-03
  • 修回日期:  2024-10-30
  • 网络出版日期:  2024-10-23

目录

    /

    返回文章
    返回