Study on the strain response characteristics of coal and rock borehole walls under high-pressure gas fracturing
-
摘要: 目前缺乏对空气致裂全过程进行精准监测和评价的手段,而应变监测能够实时记录裂纹萌生和扩展的过程。通过研究高压气体冲击全过程中孔壁的应变响应,可明确致裂过程裂纹与应变响应之间的关系,获得最优致裂角度。为了探寻高压气体致裂煤岩体过程中裂纹和与应变之间的关系,利用高压气体冲击致裂煤岩体真三轴实验系统,开展了5种冲击角度(0,30,45,60,90°)下的高压气体致裂实验,研究了气体致裂过程中煤岩体裂缝形态、气压曲线与孔壁应变响应特征。实验结果表明:① 随着冲击角度增加,煤岩体裂缝形态呈现先复杂后单一的分布特征。② 致裂过程中气压呈现上升、陡降、聚集、稳定释放4个阶段。③ 孔壁应变数据主要由拉应变组成,应变曲线出现2个明显峰值,第1个峰值在气压曲线达到峰值0.1 s后出现并伴随主裂纹产生,第2个峰值常伴随着主裂纹的衍生与扩展。④ 当冲击角度为45°时,试件内部容易萌生复杂裂纹网络,致裂效果最佳。Abstract: There has been a lack of precise methods for monitoring and evaluating the entire process of gas fracturing. However, strain monitoring can effectively record the real-time initiation and propagation of cracks. By studying the strain response of borehole walls during high-pressure gas impact, the relationship between crack formation and strain response during the fracturing process can be clarified, enabling the identification of the optimal fracturing angle. A true triaxial experimental system for high-pressure gas fracturing of coal and rock was used, and experiments were conducted at five different impact angles (0, 30, 45, 60, 90°) to investigate crack morphology, pressure curves, and strain response characteristics of the borehole walls. The experimental results revealed that: ① As the impact angle increased, the crack morphology of coal and rock exhibited a pattern that was initially complex but later became simpler. ② The gas pressure during the fracturing process passed through four stages: an increase, a sharp drop, accumulation, and steady release. ③ The strain data for the borehole walls were predominantly tensile, and the strain curve displayed two distinct peaks: the first peak occurred 0.1 seconds after the pressure curve reached its peak, coinciding with the formation of the main crack; the second peak was generally associated with the propagation and expansion of the main crack. ④ When the impact angle was 45°, a more complex crack network tended to form within the specimen, resulting in the most effective fracturing.
-
Key words:
- gas fracturing /
- borehole wall strain /
- impact angle /
- crack morphology /
- gas pressure response
-
表 1 高压气体致裂煤岩实验结果
Table 1. Experimental results of high-pressure gas fracturing of coal and rock
组号 冲击
角度/(°)起裂
压力/MPa裂缝总长
度/cm裂缝最大宽
度/mm1 0 14.11 43.50 2.5 2 30 12.95 65.76 3.2 3 45 11.64 102.50 6.4 4 60 13.08 86.40 4.3 5 90 12.20 80.30 5.5 -
[1] 袁亮,王恩元,马衍坤,等. 我国煤岩动力灾害研究进展及面临的科技难题[J]. 煤炭学报,2023,48(5):1825-1845.YUAN Liang,WANG Enyuan,MA Yankun,et al. Research progress of coal and rock dynamic disasters and scientific and technological problems in China[J]. Journal of China Coal Society,2023,48(5):1825-1845. [2] 李全贵,翟成,林柏泉,等. 定向水力压裂技术研究与应用[J]. 西安科技大学学报,2011,31(6):735-739.LI Quangui,ZHAI Cheng,LIN Baiquan,et al. Research and application of directional hydraulic fracturing technology[J]. Journal of Xi'an University of Science and Technology,2011,31(6):735-739. [3] 刘明举,孔留安,郝富昌,等. 水力冲孔技术在严重突出煤层中的应用[J]. 煤炭学报,2005,30(4):451-454. doi: 10.3321/j.issn:0253-9993.2005.04.010LIU Mingju,KONG Liu'an,HAO Fuchang,et al. Application of hydraulic flushing technology in severe outburst coal[J]. Journal of China Coal Society,2005,30(4):451-454. doi: 10.3321/j.issn:0253-9993.2005.04.010 [4] 王耀锋,李艳增. 预置导向槽定向水力压穿增透技术及应用[J]. 煤炭学报,2012,37(8):1326-1331.WANG Yaofeng,LI Yanzeng. Technology and application of directional hydraulic penetration permeability improvement by guided groove[J]. Journal of China Coal Society,2012,37(8):1326-1331. [5] 翟成,李贤忠,李全贵. 煤层脉动水力压裂卸压增透技术研究与应用[J]. 煤炭学报,2011,36(12):1996-2001.ZHAI Cheng,LI Xianzhong,LI Quangui. Research and application of coal seam pulse hydraulic fracturing technology[J]. Journal of China Coal Society,2011,36(12):1996-2001. [6] 题正义,陈波. 亭南煤矿液态CO2致裂巷道卸压技术的应用研究[J]. 金属矿山,2019(4):48-52.TI Zhengyi,CHEN Bo. Application of pressure relief technology of liquid CO2 fracturing roadway in Tingnan Coal Mine[J]. Metal Mine,2019(4):48-52. [7] 吕进国,李守国,赵洪瑞,等. 高地应力条件下高压空气爆破卸压增透技术实验研究[J]. 煤炭学报,2019,44(4):1115-1128.LYU Jinguo,LI Shouguo,ZHAO Hongrui,et al. Technology of pressure relief and permeability enhancement with high pressure air blasting under high geo-stress[J]. Journal of China Coal Society,2019,44(4):1115-1128. [8] 梁卫国,贺伟,阎纪伟. 超临界CO2致煤岩力学特性弱化与破裂机理[J]. 煤炭学报,2022,47(7):2557-2568.LIANG Weiguo,HE Wei,YAN Jiwei. Weakening and fracturing mechanism of mechanical properties of coal and rock caused by supercritical CO2[J]. Journal of China Coal Society,2022,47(7):2557-2568. [9] 杜梦琳. 煤体液氮致裂损伤演化规律及增透机理研究[D]. 徐州:中国矿业大学,2023.DU Menglin. Research on the evolution law and permeability enhancement mechanism of coal liquid nitrogen induced cracking damage[D]. Xuzhou:China University of Mining and Technology,2023. [10] 王雁冰,付代睿,李杨,等. 不同耦合介质爆破裂纹动态扩展特性研究[J]. 力学与实践,2023,45(5):1021-1032.WANG Yanbing,FU Dairui,LI Yang,et al. Study on dynamic propagation characteristics of blasting cracks in different coupling media[J]. Mechanics in Engineering,2023,45(5):1021-1032. [11] 李宁,陈莉静,张平. 爆生气体驱动岩石裂缝动态扩展分析[J]. 岩土工程学报,2006,28(4):460-463. doi: 10.3321/j.issn:1000-4548.2006.04.007LI Ning,CHEN Lijing,ZHANG Ping. Dynamic analysis for fracturing progress by detonation gas[J]. Chinese Journal of Geotechnical Engineering,2006,28(4):460-463. doi: 10.3321/j.issn:1000-4548.2006.04.007 [12] 李守国. 高压空气爆破煤层增透关键技术与装备研发[J]. 煤炭科学技术,2015,43(2):92-95.LI Shouguo. Key technology and equipment research and development of improving coal seam permeability by high pressure air blasting[J]. Coal Science and Technology,2015,43(2):92-95. [13] 李守国,吕进国,贾宝山,等. 高压空气爆破低透气性煤层增透技术应用研究[J]. 中国安全科学学报,2016,26(4):119-125.LI Shouguo,LYU Jinguo,JIA Baoshan,et al. Anti-reflection technology application study of high pressure air blasting low permeability coal seam[J]. China Safety Science Journal,2016,26(4):119-125. [14] 曾范永. 煤体高压气体爆破致裂规律的实验研究[J]. 煤矿安全,2019,50(1):13-16.ZENG Fanyong. Experimental study on cracking laws of high pressure gas explosion in coal[J]. Safety in Coal Mines,2019,50(1):13-16. [15] 严少洋,高富强,杨小林,等. 高压空气爆破作用下煤体裂纹扩展及振动特性模拟试验研究[J/OL]. 爆破:1-12[2024-08-24]. http://kns.cnki.net/kcms/ detail/42.1164.TJ.20240621.1455.004.html.YAN Shaoyang,GAO Fuqiang,YANG Xiaolin,et al. Simulated experimental study on crack extension and vibration characteristics of coal body under the action of high-pressure air blasting[J/OL]. Blasting:1-12[2024-08-24]. http://kns.cnki.net/kcms/detail/42.1164.TJ.20240621.1455.004.html. [16] 褚怀保,王昌,杨小林,等. 煤体高压空气爆破模拟试验研究[J]. 振动与冲击,2022,41(20):54-60,157.CHU Huaibao,WANG Chang,YANG Xiaolin,et al. A simulation experimental study on high-pressure air blasting of coal[J]. Journal of Vibration and Shock,2022,41(20):54-60,157. [17] 刘勇,何岸,魏建平,等. 高压气体射流破煤应力波效应分析[J]. 煤炭学报,2016,41(7):1694-1700.LIU Yong,HE An,WEI Jianping,et al. Analysis of stress wave effect during coal breakage process by high pressure gas jet[J]. Journal of China Coal Society,2016,41(7):1694-1700. [18] 刘勇,张涛,魏建平,等. 磨料形状对磨料气体射流冲蚀性能的影响研究[J]. 中国安全生产科学技术,2017,13(11):117-122.LIU Yong,ZHANG Tao,WEI Jianping,et al. Research on influence of abrasive shape on erosion performance of abrasive gas jet[J]. Journal of Safety Science and Technology,2017,13(11):117-122. [19] SHANG Zheng,WANG Haifeng,LI Bing,et al. Fracture processes in coal measures strata under liquid CO2 phase transition blasting[J]. Engineering Fracture Mechanics,2021,254. DOI:10.1016/j.engfracmech. 2021.107902. [20] CAI Can,KANG Yong,WANG Xiaochuan,et al. Experimental study on shale fracturing enhancement by using multi-times pulse supercritical carbon dioxide (SC-CO2) jet[J]. Journal of Petroleum Science and Engineering,2019,178:948-963. doi: 10.1016/j.petrol.2019.04.009 [21] CAI Can,KANG Yong,YANG Yinxin,et al. Experimental investigation on flow field and induced strain response during SC-CO2 jet fracturing[J]. Journal of Petroleum Science and Engineering,2020,195. DOI: 10.1016/j.petrol.2020.107795.