留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于POD与机器学习的综掘工作面流场快速预测算法

金兵 张浪 李伟 郑义 刘彦青 张逸斌

金兵,张浪,李伟,等. 基于POD与机器学习的综掘工作面流场快速预测算法[J]. 工矿自动化,2024,50(10):97-104, 119.  doi: 10.13272/j.issn.1671-251x.2024080090
引用本文: 金兵,张浪,李伟,等. 基于POD与机器学习的综掘工作面流场快速预测算法[J]. 工矿自动化,2024,50(10):97-104, 119.  doi: 10.13272/j.issn.1671-251x.2024080090
JIN Bing, ZHANG Lang, LI Wei, et al. Rapid prediction algorithm for flow field in fully mechanized excavation face based on POD and machine learning[J]. Journal of Mine Automation,2024,50(10):97-104, 119.  doi: 10.13272/j.issn.1671-251x.2024080090
Citation: JIN Bing, ZHANG Lang, LI Wei, et al. Rapid prediction algorithm for flow field in fully mechanized excavation face based on POD and machine learning[J]. Journal of Mine Automation,2024,50(10):97-104, 119.  doi: 10.13272/j.issn.1671-251x.2024080090

基于POD与机器学习的综掘工作面流场快速预测算法

doi: 10.13272/j.issn.1671-251x.2024080090
基金项目: 国家重点研发计划项目(2023YFC3009001-8);天地科技科技创新专项重点项目(2024-TD-ZD011-01);煤科院技术创新基金项目(2021CX-II-15)。
详细信息
    作者简介:

    金兵(1994—),男,辽宁抚顺人,助理研究员,硕士,主要从事矿井通风与防尘技术研究工作,E-mail:1029347049@qq.com

  • 中图分类号: TD714.4

Rapid prediction algorithm for flow field in fully mechanized excavation face based on POD and machine learning

  • 摘要: 针对综掘工作面降尘措施难以合理利用的问题,提出了一种基于本征正交分解(POD)与机器学习的综掘工作面流场快速预测算法。利用计算流体力学(CFD)技术对多种工况下的综掘工作面风流场和粉尘浓度场进行模拟,获得高维度流场数据;利用POD对高维度流场数据进行降维,提取能够反映流场主要特性的核心模态,得到流场工况的基函数模态与模态系数;通过机器学习方法预测不同工况下占总能量达到90%以上的模态系数,从而对未知工况的模态系数进行预测,利用预测的模态系数与基函数模态进行重构,得到未知工况的风流场数据或粉尘浓度场。研究结果表明:综掘工作面数值模拟模型的相对误差在3%以内,能够准确反映实际的风流和粉尘分布状况;风流场选择前5阶模态,粉尘浓度场选择前7阶模态,即可兼顾POD重构精度与效率;支持向量机(SVM)模型对模态系数的预测能力优于随机森林及神经网络模型,针对60种不同工况,基于POD和SVM预测的风流速度、粉尘浓度与数值模拟结果之间的相对误差分别为0.36 m/s,86.24 mg/m3,风流场及粉尘浓度场平均预测耗时为73 s,实现了对矿井综掘工作面风流场和粉尘浓度场的高精度快速预测。

     

  • 图  1  基于POD与机器学习的综掘工作面流场快速预测流程

    Figure  1.  Fast prediction flow for fullymechanized excavation face based on proper orthogonal decomposition (POD) and machine learning

    图  2  综掘工作面数值模拟模型

    1—工作面;2—掘进机;3—压风筒;4—输送带;5—抽风筒;6—巷道壁;7—出风口。

    Figure  2.  Numerical simulation model of fully mechanized excavation face

    图  3  网格独立性验证

    Figure  3.  Grid independence validation

    图  4  风流场和粉尘浓度场系统各阶模态能量贡献率及累计贡献率

    Figure  4.  Energy contribution rate and cumulative contribution rate of each mode in air flow field and dust concentration field system

    图  5  重构后风流场与粉尘浓度场及原流场MAE

    Figure  5.  Mean absolute error (MAE) of reconstructed air flow field, dust concentration field and original flow field

    图  6  展示平面

    Figure  6.  Display plane

    图  7  数值模拟结果与模态重构结果对比

    Figure  7.  Comparison of numerical simulation and mode reconstruction results

    图  8  数值模拟结果与预测结果对比

    Figure  8.  Comparison of numerical simulation and prediction results

    表  1  离散相参数设定

    Table  1.   Discrete phase parameter settings

    设置选项 设定
    相间耦合 开启
    耦合频率 20
    粉尘材料 coal−mv
    喷射方式 表面喷射
    质量流率/(kg·s−1 0.008,0.012
    最大颗粒直径/m 5×10−5,1×10−4,2×10−4
    最小颗粒直径/m 5×10−7,1×10−6
    积分尺度 0.15
    粒径数量/个 10
    湍流扩散模型 离散随机游走模型
    下载: 导出CSV

    表  2  边界条件设定

    Table  2.   Boundary condition setting

    部件 边界条件 设定
    压风筒 入口类型 速度入口
    入口速度/(m·s−1 8,9,10,11,12
    出风口类型 压力出口
    抽风筒 入口类型 速度入口
    入口速度/(m·s−1 10,11,12,13,14
    巷道 出风口类型 压力出口
    壁面类型 石壁
    掘进机 壁面类型 金属壁
    输送带 壁面类型 金属壁
    下载: 导出CSV

    表  3  风速及粉尘浓度模拟值与实测值对比

    Table  3.   Comparison of simulated and measured values of wind speed and dust concentration

    参数风速/(m·s−1粉尘浓度/(mg·m−3
    模拟值3.42864.37
    实测值3.59842.34
    相对误差/%4.742.62
    下载: 导出CSV

    表  4  3种机器学习模型性能评估指标

    Table  4.   Performance evaluation indicators for three machine learning models

    模型 RMSE R2
    风流场/(m·s−1 粉尘浓度场/(mg·m−3 风流场 粉尘浓度场
    SVM 0.29 425.47 0.90 0.86
    RF 0.78 889.23 0.76 0.64
    NN 1.98 1043.61 0.62 0.51
    下载: 导出CSV

    表  5  3种机器学习模型的交叉验证结果

    Table  5.   Cross-validation results of three machine learning models

    流场类型 模型 平均
    RMSE
    标准差 95%置信区间
    风流场/(m·s−1SVM0.310.40[0.15, 0.47]
    RF0.820.24[0.36, 1.28]
    NN2.050.22[1.62, 2.48]
    粉尘浓度
    场/(mg·m−3
    SVM431.7847.23[341.42, 522.14]
    RF905.6778.34[756.81, 1055.22]
    NN1 048.9296.75[859.21, 1238.63]
    下载: 导出CSV
  • [1] 袁亮. 煤矿粉尘防控与职业安全健康科学构想[J]. 煤炭学报,2020,45(1):1-7.

    YUAN Liang. Scientific conception of coal mine dust control and occupational safety[J]. Journal of China Coal Society,2020,45(1):1-7.
    [2] 中华人民共和国国家卫生健康委员会规划发展与信息化司. 2018年我国卫生健康事业发展统计公报[EB/OL]. [2024-08-22]. http://www.Nhc.gov.cn/ guihuaxxs/s10748/201905/9b8d52727cf346049de8acce25ffcbd0.shtml.

    Planning,Development and Information Technology Department of National Health Commission of the People’s Republic of China. 2018 China's health development statistical bulletin[EB/OL]. [2024-08-22]. http://www.Nhc.gov.cn/guihuaxxs/s10748/201905/9b8d52727cf346049de8acce25ffcbd0.shtml.
    [3] 赵春双,刘剑,田瑞祥,等. 压入式掘进通风流场PIV实验研究[J]. 矿业安全与环保,2017,44(2):21-25,30. doi: 10.3969/j.issn.1008-4495.2017.02.005

    ZHAO Chunshuang,LIU Jian,TIAN Ruixiang,et al. PIV experiment study on flow field of forced ventilation system for roadway heading[J]. Mining Safety & Environmental Protection,2017,44(2):21-25,30. doi: 10.3969/j.issn.1008-4495.2017.02.005
    [4] 韩敏,王建国,王康. 多抽风筒对综掘面除尘的影响研究[J]. 矿业安全与环保,2022,49(5):114-118.

    HAN Min,WANG Jianguo,WANG Kang. Study on the influence of multiple exhaust pipes on dust removal in fully mechanized excavation face[J]. Mining Safety & Environmental Protection,2022,49(5):114-118.
    [5] 李天宇,陈曦,钟文琪. 基于CFD与POD的煤粉锅炉三维速度场快速预测[J]. 东南大学学报(自然科学版),2022,52(4):641-649.

    LI Tianyu,CHEN Xi,ZHONG Wenqi. Rapid prediction of three-dimensional velocity field of pulverized coal boiler based on CFD and POD[J]. Journal of Southeast University (Natural Science Edition),2022,52(4):641-649.
    [6] 陈刚,李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展,2011,41(6):686-701. doi: 10.6052/1000-0992-2011-6-lxjzJ2011-009

    CHEN Gang,LI Yueming. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics,2011,41(6):686-701. doi: 10.6052/1000-0992-2011-6-lxjzJ2011-009
    [7] 傅奇星,张之豪,余秋阳,等. 基于POD模态拟合的汽车尾流场重构[C]. 中国汽车工程学会汽车空气动力学分会学术年会,上海,2022.

    FU Qixing,ZHANG Zhihao,YU Qiuyang,et al. Reconstruction of automobile wake based on POD modes fitting[C]. Annual Conference of the Automotive Aerodynamics Branch of the Chinese Society of Automotive Engineers,Shanghai,2022.
    [8] 王磊,高丽敏,茅晓晨,等. 基于POD方法的对转压气机叶顶非定常流场分析[J/OL]. 航空动力学报:1-16[2024-08-22]. https://doi.org/10.13224/j.cnki.jasp.20220896.

    WANG Lei,GAO Limin,MAO Xiaochen,et al. Analysis of tip unsteady flow field in a counter-rotating compressor based on POD method[J/OL]. Journal of Aerospace Power:1-16 [2024-08-22]. https://doi.org/10.13224/j.cnki.jasp.20220896.
    [9] 孙翀,田甜,竺晓程,等. 风力机翼型非定常流场POD和EPOD分析[J]. 上海交通大学学报,2022,56(1):45-52.

    SUN Chong,TIAN Tian,ZHU Xiaocheng,et al. Analysis of POD and EPOD for unsteady flow field of wind turbine airfoil[J]. Journal of Shanghai Jiao Tong University,2022,56(1):45-52.
    [10] 贾续毅,龚春林,李春娜. 基于POD和BPNN的流场快速计算方法[J]. 西北工业大学学报,2021,39(6):1212-1221. doi: 10.3969/j.issn.1000-2758.2021.06.006

    JIA Xuyi,GONG Chunlin,LI Chunna. Fast flow simulation method based on POD and BPNN[J]. Journal of Northwestern Polytechnical University,2021,39(6):1212-1221. doi: 10.3969/j.issn.1000-2758.2021.06.006
    [11] 肖颖,肖翔域,段壮,等. 采用本征正交分解和长短期记忆网络模型的离心泵流场预测[J/OL]. 西安交通大学学报:1-11[2024-08-22]. http://kns.cnki.net/kcms/detail/61.1069.T.20240703.1631.002.html.

    XIAO Ying,XIAO Xiangyu,DUAN Zhuang,et al. Flow field prediction in centrifugal pump based on the proper orthogonal decomposition-radial basis function model[J/OL]. Journal of Xi'an Jiaotong University:1-11 [2024-08-22]. http://kns.cnki.net/kcms/detail/61.1069.T.20240703.1631.002.html.
    [12] LIU Qiang,NIE Wen,HUA Yun,et al. The effects of the installation position of a multi-radial swirling air-curtain generator on dust diffusion and pollution rules in a fully-mechanized excavation face:a case study[J]. Powder Technology,2018,329:371-385. doi: 10.1016/j.powtec.2018.01.064
    [13] AMIRI Z,MOVAHEDIRAD S. Bubble-induced particle mixing in a 2-D gas-solid fluidized bed with different bed aspect ratios:a CFD-DPM study[J]. Powder Technology,2017,320:637-645. doi: 10.1016/j.powtec.2017.07.097
    [14] HU Shengyong,LIAO Qi,FENG Guorui,et al. Numerical study of gas-solid two-phase flow around road-header drivers in a fully mechanized excavation face[J]. Powder Technology,2019,344:959-969. doi: 10.1016/j.powtec.2018.12.076
    [15] 于欣,陈连军,刘国明. 喷浆作业粉尘分布影响因素的数值模拟[J]. 矿业研究与开发,2017,37(2):97-101.

    YU Xin,CHEN Lianjun,LIU Guoming. Numerical simulation of influencing factors on dust distribution during shotcreting[J]. Mining Research and Development,2017,37(2):97-101.
    [16] 周刚,张琦,白若男,等. 大采高综采面风流−呼尘耦合运移规律CFD数值模拟[J]. 中国矿业大学学报,2016,45(4):684-693.

    ZHOU Gang,ZHANG Qi,BAI Ruonan,et al. CFD simulation of air-respirable dust coupling migration law at fully mechanized mining face with large mining height[J]. Journal of China University of Mining & Technology,2016,45(4):684-693.
    [17] CHENG Weimin,YU Haiming,ZHOU Gang,et al. The diffusion and pollution mechanisms of airborne dusts in fully-mechanized excavation face at mesoscopic scale based on CFD-DEM[J]. Process Safety and Environmental Protection,2016,104:240-253. doi: 10.1016/j.psep.2016.09.004
    [18] ZHAO Kai,JANUTOLO M,BARLA G. A completely 3D model for the simulation of mechanized tunnel excavation[J]. Rock Mechanics and Rock Engineering,2012,45(4):475-497. doi: 10.1007/s00603-012-0224-3
    [19] ROWLEY C W,COLONIUS T,MURRAY R M. Model reduction for compressible flows using POD and Galerkin projection[J]. Physica D:Nonlinear Phenomena,2004,189(1/2):115-129.
    [20] 李鑫灵,袁梅,董洪,等. PSO−SVM模型在掘进工作面突出预警系统中的应用[J]. 煤矿安全,2021,52(9):90-95.

    LI Xinling,YUAN Mei,DONG Hong,et al. Application of PSO-SVM model in outburst warning system of heading face[J]. Safety in Coal Mines,2021,52(9):90-95.
    [21] 成小雨,周爱桃,郭焱振,等. 基于随机森林与支持向量机的回采工作面瓦斯涌出量预测方法[J]. 煤矿安全,2022,53(10):205-211.

    CHENG Xiaoyu,ZHOU Aitao,GUO Yanzhen,et al. Prediction method of gas emission based on random forest and support vector machine[J]. Safety in Coal Mines,2022,53(10):205-211.
    [22] 张浪,张迎辉,张逸斌,等. 基于机器学习的通风网络故障诊断方法研究[J]. 工矿自动化,2022,48(3):91-98.

    ZHANG Lang,ZHANG Yinghui,ZHANG Yibin,et al. Research on fault diagnosis method of ventilation network based on machine learning[J]. Journal of Mine Automation,2022,48(3):91-98.
    [23] 刘彦青. 基于巷道摩擦阻力系数BP神经网络预测模型的矿井风网风量预测研究[J]. 矿业安全与环保,2021,48(2):101-106.

    LIU Yanqing. Study on the air quantity of mine ventilation network based on BP neural network prediction model of friction resistance coefficient in roadway[J]. Mining Safety & Environmental Protection,2021,48(2):101-106.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-30
  • 修回日期:  2024-10-29
  • 网络出版日期:  2024-09-29

目录

    /

    返回文章
    返回