留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GSL−YOLO模型的综放工作面混矸率检测方法

王福奇 王志峰 金建成 井庆贺 王耀辉 王大龙 汪义龙

王福奇,王志峰,金建成,等. 基于GSL−YOLO模型的综放工作面混矸率检测方法[J]. 工矿自动化,2024,50(9):59-65, 137.  doi: 10.13272/j.issn.1671-251x.2024080011
引用本文: 王福奇,王志峰,金建成,等. 基于GSL−YOLO模型的综放工作面混矸率检测方法[J]. 工矿自动化,2024,50(9):59-65, 137.  doi: 10.13272/j.issn.1671-251x.2024080011
WANG Fuqi, WANG Zhifeng, JIN Jiancheng, et al. Detection method for gangue mixed ratio in fully mechanized caving faces based on the GSL-YOLO model[J]. Journal of Mine Automation,2024,50(9):59-65, 137.  doi: 10.13272/j.issn.1671-251x.2024080011
Citation: WANG Fuqi, WANG Zhifeng, JIN Jiancheng, et al. Detection method for gangue mixed ratio in fully mechanized caving faces based on the GSL-YOLO model[J]. Journal of Mine Automation,2024,50(9):59-65, 137.  doi: 10.13272/j.issn.1671-251x.2024080011

基于GSL−YOLO模型的综放工作面混矸率检测方法

doi: 10.13272/j.issn.1671-251x.2024080011
基金项目: 国家自然科学基金面上项目(52274207);天地科技开采设计事业部科技创新基金项目(KJ-2021-KCMS-02)。
详细信息
    作者简介:

    王福奇(1978—),男,甘肃华亭人,高级工程师,研究方向为煤炭开采,E-mail:11185351260@qq.com

  • 中图分类号: TD823.49

Detection method for gangue mixed ratio in fully mechanized caving faces based on the GSL-YOLO model

  • 摘要: 针对现有基于深度学习的综放工作面混矸率检测方法在井下低照度、高粉尘、煤矸堆叠等复杂条件下存在煤矸识别精度低、分割效果差、模型参数量和运算量大、未实现混矸率的实时检测等问题,提出了一种基于GSL−YOLO模型的混矸率检测方法。GSL−YOLO模型在YOLOv8−seg的基础上进行以下改进:在主干网络中引入全局注意力机制(GAM),通过减少信息弥散和放大全局交互表示提高模型特征提取能力;选用具有高效局部聚合网络的空间金字塔池化(SPPELAN)模块,提升模型处理不同尺寸目标时的检测性能;采用轻量级非对称多级压缩检测头(LADH),降低模型的训练难度,同时提高推理速度。提出了一种基于类别分割掩码的混矸率计算方法,该方法基于煤流图像处理结果中的分割掩码信息,计算其中矸石的像素面积与总像素面积的比值,作为瞬时混矸率。实验结果表明:① GSL−YOLO模型的mAP@0.5∶0.95达96.1%,比YOLOv8−seg模型提高了0.8%。② GSL−YOLO模型的参数量为2.9×106个,浮点运算次数为11.4×109,模型权重为6.0 MiB,比YOLOv8−seg模型分别降低了12.1%,5.8%,11.8%,实现了模型的轻量化。③ GSL−YOLO模型在测试集上的帧率为12帧/s,基本满足实时检测要求。④ 与YOLO系列模型相比,GSL−YOLO模型分割效果最好,检测精度最高,参数量和运算量较少,综合性能最佳。⑤ 基于截取的综放工作面后部刮板输送机上煤流视频中的3帧图像,计算了瞬时混矸率,结果表明,提出的混矸率计算方法基本实现了综放工作面混矸率的实时计算。

     

  • 图  1  GSL−YOLO模型结构

    Figure  1.  GSL-YOLO model structure

    图  2  GAM结构

    Figure  2.  Global attention mechanism(GAM) structure

    图  3  通道注意力子模块

    Figure  3.  Channel attention sub-module

    图  4  空间注意力子模块

    Figure  4.  Spatial attention sub-module

    图  5  SPPELAN模块

    Figure  5.  Spatial pyramid pooling with efficient local aggregation network (SPPELAN) module

    图  6  LADH结构

    Figure  6.  Lightweight asymmetric dual-head (LADH) structure

    图  7  模型改进前后热力图对比

    Figure  7.  Comparison of heat maps before and after model improvement

    图  8  煤矸图像增强效果

    Figure  8.  Images enhancement effect of coal and gangue

    图  9  模型分割效果对比

    Figure  9.  Comparison of model segmentation effects

    表  1  消融实验结果

    Table  1.   Ablation experimental results

    YOLOv8−
    seg
    GAM SPPELAN LADH mAP@
    0.5∶0.95/%
    参数
    量/
    106
    浮点
    运算次
    数/109
    模型
    权重/
    MiB
    × × × 95.3 3.3 12.1 6.8
    × × 95.7 3.7 12.5 7.7
    × × 95.5 2.7 11.6 5.7
    × × 96.1 3.3 11.7 6.9
    × 95.8 2.8 11.7 5.9
    × 96.3 3.7 12.1 7.8
    × 95.6 2.8 11.3 5.8
    96.1 2.9 11.4 6.0
    下载: 导出CSV

    表  2  对比实验结果

    Table  2.   Comparative experimental results

    模型 mAP@
    0.5∶0.95/%
    参数
    量/106
    浮点运算
    次数/109
    模型
    权重/MiB
    YOLOv8−seg 95.3 3.3 12.1 6.8
    YOLOv3−tiny−seg 87.1 14.1 32.8 28.3
    YOLOv5−seg 95.0 2.8 11.1 5.8
    YOLOv6−seg 95.1 4.4 15.3 9.0
    GSL−YOLO 96.1 2.9 11.4 6.0
    下载: 导出CSV

    表  3  混矸率计算结果

    Table  3.   Calculation results of gangue mixed ratio

    图像 原图 分割结果 混矸
    率/%
    帧率/
    (帧·s−1
    图像1 7 5.0
    图像2 25 4.9
    图像3 45 4.8
    下载: 导出CSV
  • [1] 王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181-202.

    WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181-202.
    [2] 王国法,孟令宇. 煤矿智能化及其技术装备发展[J]. 中国煤炭,2023,49(7):1-13.

    WANG Guofa,MENG Lingyu. Development of coal mine intelligence and its technical equipment[J]. China Coal,2023,49(7):1-13.
    [3] 王国法,庞义辉,许永祥,等. 厚煤层智能绿色高效开采技术与装备研发进展[J]. 采矿与安全工程学报,2023,40(5):882-893.

    WANG Guofa,PANG Yihui,XU Yongxiang,et al. Development of intelligent green and efficient mining technology and equipment for thick coal seam[J]. Journal of Mining & Safety Engineering,2023,40(5):882-893.
    [4] 王家臣. 我国放顶煤开采的工程实践与理论进展[J]. 煤炭学报,2018,43(1):43-51.

    WANG Jiachen. Engineering practice and theoretical progress of top-coal caving mining technology in China[J]. Journal of China Coal Society,2018,43(1):43-51.
    [5] 王家臣. 我国综放开采40年及展望[J]. 煤炭学报,2023,48(1):83-99.

    WANG Jiachen. 40 years development and prospect of longwall top coal caving in China[J]. Journal of China Coal Society,2023,48(1):83-99.
    [6] 王家臣,张锦旺. 综放开采顶煤放出规律的BBR研究[J]. 煤炭学报,2015,40(3):487-493.

    WANG Jiachen,ZHANG Jinwang. BBR study of top-coal drawing law in longwall top-coal caving mining[J]. Journal of China Coal Society,2015,40(3):487-493.
    [7] 李良晖. 放顶煤工作面煤矸混合度自动识别研究进展[J]. 煤炭工程,2017,49(10):30-34.

    LI Lianghui. Research progress of automatic recognition of coal-gangue mixedness in longwall top-coal caving face[J]. Coal Engineering,2017,49(10):30-34.
    [8] 李嘉豪,司垒,王忠宾,等. 综放工作面煤矸识别技术及其应用[J]. 仪器仪表学报,2024,45(1):1-15.

    LI Jiahao,SI Lei,WANG Zhongbin,et al. Coal gangue identification technology and its application in fully-mechanized coal mining face[J]. Chinese Journal of Scientific Instrument,2024,45(1):1-15.
    [9] 李德永,王国法,郭永存,等. 基于CFS−YOLO算法的复杂工况环境下煤矸图像识别方法[J]. 煤炭科学技术,2024,52(6):226-237.

    LI Deyong,WANG Guofa,GUO Yongcun,et al. Image recognition method of coal gangue in complex working conditions based on CFS-YOLO algorithm[J]. Coal Science and Technology,2024,52(6):226-237.
    [10] 何凯,程刚,王希,等. 基于CED−YOLOv5s模型的煤矸识别方法研究[J]. 工矿自动化,2024,50(2):49-56,82.

    HE Kai,CHENG Gang,WANG Xi,et al. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation,2024,50(2):49-56,82.
    [11] 滕文想,王成,费树辉. 基于HGTC−YOLOv8n模型的煤矸识别算法研究[J]. 工矿自动化,2024,50(5):52-59.

    TENG Wenxiang,WANG Cheng,FEI Shuhui. Research on coal gangue recognition algorithm based on HGTC-YOLOv8n model[J]. Journal of Mine Automation,2024,50(5):52-59.
    [12] 杨洋,李海雄,胡淼龙,等. 基于YOLOv5−SEDC模型的煤矸分割识别方法[J]. 工矿自动化,2024,50(8):120-126.

    YANG Yang,LI Haixiong,HU Miaolong,et al. Coal and gangue segmentation and recognition method based on YOLOv5-SEDC model[J]. Journal of Mine Automation,2024,50(8):120-126.
    [13] 王家臣,潘卫东,张国英,等. 图像识别智能放煤技术原理与应用[J]. 煤炭学报,2022,47(1):87-101.

    WANG Jiachen,PAN Weidong,ZHANG Guoying,et al. Principles and applications of image-based recognition of withdrawn coal and intelligent control of draw opening in longwall top coal caving face[J]. Journal of China Coal Society,2022,47(1):87-101.
    [14] 王家臣,李良晖,杨胜利. 不同照度下煤矸图像灰度及纹理特征提取的实验研究[J]. 煤炭学报,2018,43(11):3051-3061.

    WANG Jiachen,LI Lianghui,YANG Shengli. Experimental study on gray and texture features extraction of coal and gangue image under different illuminance[J]. Journal of China Coal Society,2018,43(11):3051-3061.
    [15] 贺海涛,王佳豪,张海峰,等. 基于U−Net的放煤状态控制关键技术研究[J]. 煤炭科学技术,2022,50(增刊2):237-243.

    HE Haitao,WANG Jiahao,ZHANG Haifeng,et al. Calculation method of gangue content of coal gangue mixed image in fully-mechanized caving based on U-Net[J]. Coal Science and Technology,2022,50(S2):237-243.
    [16] 单鹏飞,孙浩强,来兴平,等. 基于改进Faster R−CNN的综放煤矸混合放出状态识别方法[J]. 煤炭学报,2022,47(3):1382-1394.

    SHAN Pengfei,SUN Haoqiang,LAI Xingping,et al. Identification method on mixed and release state of coal-gangue masses of fully mechanized caving based on improved Faster R-CNN[J]. Journal of China Coal Society,2022,47(3):1382-1394.
    [17] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
    [18] 油亚鹏,马波,赵乐,等. 基于CA−YOLOv8的输送带大块煤检测方法 [J/OL]. 计算机辅助设计与图形学学报:1-12[2024-07-06]. http://kns.cnki.net/kcms/detail/11.2925.TP.20240204.1655.057.html.

    YOU Yapeng,MA Bo,ZHAO Le,et al. Large coal detection method for conveyor belt based on CA-YOLOv8[J/OL] Journal of Computer- Aided Design and Graphics:1-12[2024-07-06]. http://kns.cnki.net/kcms/detail/11.2925.TP.20240204.1655.057.html.
    [19] LIU Yichao,SHAO Zongru,HOFFMANN N. Global attention mechanism:retain information to enhance channel-spaial interactions[EB/OL]. [2024-06-20]. http:// arxiv.org/pdf/2112.05561.
    [20] WANG C Y,BOCHKOVSKIY A,LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:7464-7475.
    [21] 杨志渊,罗亮,吴天阳,等. 改进YOLOv8的轻量级光学遥感图像船舶目标检测算法[J]. 计算机工程与应用,2024,60(16):248-257.

    YANG Zhiyuan,LUO Liang,WU Tianyang,et al. Improved lightweight ship target detection algorithm for optical remote sensing images with YOLOv8[J]. Computer Engineering and Applications,2024,60(16):248-257.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  20
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-05
  • 修回日期:  2024-09-22
  • 网络出版日期:  2024-09-29

目录

    /

    返回文章
    返回