留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近直立煤层群水平分段综放开采充填卸压防冲研究

王子伟 程博源 魏炜杰 孙文超 谢东恒 谢缅羽

王子伟,程博源,魏炜杰,等. 近直立煤层群水平分段综放开采充填卸压防冲研究[J]. 工矿自动化,2024,50(9):82-89.  doi: 10.13272/j.issn.1671-251x.2024070119
引用本文: 王子伟,程博源,魏炜杰,等. 近直立煤层群水平分段综放开采充填卸压防冲研究[J]. 工矿自动化,2024,50(9):82-89.  doi: 10.13272/j.issn.1671-251x.2024070119
WANG Ziwei, CHENG Boyuan, WEI Weijie, et al. Research on filling, pressure relief, and rock burst prevention in horizontal sublevel fully mechanized top coal caving of near-vertical coal seam groups[J]. Journal of Mine Automation,2024,50(9):82-89.  doi: 10.13272/j.issn.1671-251x.2024070119
Citation: WANG Ziwei, CHENG Boyuan, WEI Weijie, et al. Research on filling, pressure relief, and rock burst prevention in horizontal sublevel fully mechanized top coal caving of near-vertical coal seam groups[J]. Journal of Mine Automation,2024,50(9):82-89.  doi: 10.13272/j.issn.1671-251x.2024070119

近直立煤层群水平分段综放开采充填卸压防冲研究

doi: 10.13272/j.issn.1671-251x.2024070119
基金项目: 中国博士后科学基金项目(2024T171006);国家自然科学基金青年基金项目(52204163);中央高校基本业务费资助项目(2024ZKPYNY04,2023YQTD02)。
详细信息
    作者简介:

    王子伟(1991—),男,陕西眉县人,工程师,主要从事煤矿综采技术应用工作,E-mail:421669883@qq.com

    通讯作者:

    魏炜杰(1991—),男,河北武安人,讲师,博士,研究方向为厚煤层开采技术,E-mail:wwjie@cumtb.edu.cn

  • 中图分类号: TD823.7

Research on filling, pressure relief, and rock burst prevention in horizontal sublevel fully mechanized top coal caving of near-vertical coal seam groups

  • 摘要: 目前近直立煤层开采冲击地压防治措施主要有爆破、水压致裂、建立保护层等,或破坏层间岩柱和顶底板,或难以解决大采深情况下的层间岩柱应力集中问题,且会导致较大的地表沉降。以乌东煤矿为工程背景,针对近直立煤层群水平分段综放开采方法,提出了充填采空区技术,以支护层间岩柱及顶底板,降低开采分段周围煤岩体的应力集中现象。设计了3种充填方案:方案1为第一开采分段采空区使用高强度材料充填,其余分段采用普通材料充填;方案2为第一开采分段采空区使用高强度材料充填,其余分段交替采用高强度材料和普通材料充填;方案3为每一分段采空区均使用高强度材料充填。通过数值模拟研究了3种充填方案的卸压防冲效果,结果表明:与未充填相比,3种充填方案下层间岩柱最大垂直应力分别下降25.07%,26.57%,29.23%,下一分段煤体最大水平应力分别下降10.63%,10.79%,12.34%。综合考虑卸压效果和经济效益,优选间隔充填的方案3。指出可结合高应力区域实时智能监测技术,及时支撑层间岩柱,减少层间岩柱及下分段煤体的应力集中,防止冲击地压发生。

     

  • 图  1  乌东煤矿地质结构

    Figure  1.  Geological structure of Wudong Coal Mine

    图  2  2021−01−18—2023−12−18乌东煤矿地音监测数据

    Figure  2.  Seismic monitoring data of Wudong Coal Mine from January 18, 2021, to December 18, 2023

    图  3  数值模拟初始模型

    Figure  3.  Initial model of numerical simulation

    图  4  不同充填方案下数值模型垂直应力

    Figure  4.  Vertical stress in numerical model under different filling schemes

    图  5  层间岩柱垂直应力集中区域

    Figure  5.  Vertical stress concentration area of interlayer rock pillars

    图  6  层间岩柱垂直应力集中区域测线布置

    Figure  6.  Survey line layout for vertical stress concentration areas of interlayer rock pillars

    图  7  层间岩柱垂直应力集中区域测量数据

    Figure  7.  Measurement data of vertical stress concentration in interlayer rock pillars

    图  8  不同方案下数值模型x轴方向位移

    Figure  8.  Displacement in the x-axis direction of numerical models under different schemes

    图  9  层间岩柱及顶底板x轴方向位移

    Figure  9.  Displacement in the x-axis direction of interlayer rock pillars and roof/floor strata

    图  10  不同方案下数值模型x轴方向水平应力

    Figure  10.  Horizontal stress in the x-axis direction of numerical models under different schemes

    图  11  +375~+400 m阶段煤体x轴方向水平应力

    Figure  11.  Horizontal stress in the x-axis direction of coal bodies at +375-+400 m level

    图  12  B1+2煤层+375~+400 m阶段煤体x轴方向水平应力

    Figure  12.  Horizontal stress in the x-axis direction of coal body in B1+2 coal seam at +375-+400 m level

    图  13  B3+6煤层+375~+400 m阶段煤体x轴方向水平应力

    Figure  13.  Horizontal stress in the x-axis direction of coal body in B3+6 coal seam at +375-+400 m level

    表  1  数值模型参数

    Table  1.   Parameters of numerical model

    岩层 密度/
    (kg·m−3
    体积模
    量/GPa
    剪切模
    量/GPa
    内摩擦
    角/(°)
    黏聚力/
    MPa
    抗拉强
    度/MPa
    B1+2基本底 2 752 15.9 10.1 32 5.7 5.2
    B1+2直接底 2 478 8.3 6.4 28 2.4 1.9
    B1+2煤层 1 318 5.8 4.3 25 1.2 1.4
    B1+2直接顶 2 509 8.3 6.4 28 2.4 1.9
    B1+2 基本顶 2 724 15.9 10.1 32 5.7 5.2
    B3+6基本底 2 724 15.9 10.1 32 5.7 5.2
    B3+6直接底 2 509 8.3 6.4 28 2.4 1.9
    B3+6 煤层 1 336 5.8 4.3 25 1.2 1.4
    B3+6直接顶 2 476 8.3 6.4 28 2.4 1.9
    B3+6基本顶 2 813 15.9 10.1 32 5.7 5.2
    边界岩柱 2 724 13.6 8.9 30 5.4 4.3
    黄土层 1 790 0.005 56 0.001 85 10.5 0.01 0
    下载: 导出CSV

    表  2  数值模型充填方案

    Table  2.   Filling schemes of numerical model

    编号方案
    1未进行充填
    2在+700~+675 m的第一开采分段采空区使用高强度材料充填,之后采用普通材料充填
    3在+700~+675 m的第一开采分段采空区使用高强度材料充填,之后对B1+2煤层和B3+6煤层交替使用高强度材料和普通材料,即每隔一分段进行高强度材料充填,其他分段使用普通材料充填
    4对B1+2煤层和B3+6煤层的每一分段采空区进行高强度材料充填
    下载: 导出CSV
  • [1] 阎跃观,戴华阳,王忠武,等. 急倾斜多煤层开采地表沉陷分区与围岩破坏机理——以木城涧煤矿大台井为例[J]. 中国矿业大学学报,2013,42(4):547-553.

    YAN Yueguan,DAI Huayang,WANG Zhongwu, et al. Ground subsidence zone and surrounding rock failure mechanism due to steep multiple coal seam mining:a case study at Muchenyjian Datai Mine[J]. Journal of China University of Mining & Technology,2013,42(4):547-553.
    [2] 王家臣,张锦旺,王兆会. 放顶煤开采基础理论与应用[M]. 北京:科学出版社,2018:6-10.

    WANG Jiachen,ZHANG Jinwang,WANG Zhaohui. Fundamental theory and application of top coal caving[M]. Beijing:Science Publishing House,2018:6-10.
    [3] 杜计平,孟宪锐. 采矿学[M]. 徐州:中国矿业大学出版社,2014:158-161.

    DU Jiping,MENG Xianrui. Mining engineering[M]. Xuzhou:China University of Mining and Technology Press,2014:158-161.
    [4] 贺林. 乌鲁木齐矿区急倾斜煤层开采地表移动变形规律研究[D]. 西安:西安科技大学,2008.

    HE Lin. Study on the rule of ground movement and deformation in steep coal seam mining of Urumchi mining area[D]. Xi'an:Xi'an University of Science and Technology,2008.
    [5] 王家臣. 我国综放开采40年及展望[J]. 煤炭学报,2023,48(1):83-99.

    WANG Jiachen. 40 years development and prospect of longwall top coal caving in China[J]. Journal of China Coal Society,2023,48(1):83-99.
    [6] 张锦旺,程东亮,王家臣,等. 水平分段综放开采顶煤放出体理论计算模型[J]. 煤炭学报,2023,48(2):576-592.

    ZHANG Jinwang,CHENG Dongliang,WANG Jiachen,et al. Theoretical calculation model of top coal drawing body in horizontal sublevel top coal caving mining[J]. Journal of China Coal Society,2023,48(2):576-592.
    [7] 陈建强,宋大钊,常博,等. 近直立煤层冲击危险静动态评价方法研究[J]. 煤炭科学技术,2023,51(9):24-34.

    CHEN Jianqiang,SONG Dazhao,CHANG Bo,et al. Static-dynamic rockburst risk assessment method in near-vertical coal seams[J]. Coal Science and Technology,2023,51(9):24-34.
    [8] 袁崇亮,王永忠,施现院,等. 近直立特厚煤层分段综放夹持煤柱冲击机理[J]. 采矿与安全工程学报,2023,40(1):60-68.

    YUAN Chongliang,WANG Yongzhong,SHI Xianyuan,et al. Impact mechanism of clamped coal pillar in sublevel fully mechanized top coal caving in the near vertical extra thick coal seam[J]. Journal of Mining & Safety Engineering,2023,40(1):60-68.
    [9] 杜涛涛,李康,蓝航,等. 近直立特厚煤层冲击地压致灾过程分析[J]. 采矿与安全工程学报,2018,35(1):140-145.

    DU Taotao,LI Kang,LAN Hang,et al. Rockburst process analysis in steeply-inclined extremely-thick coal seam[J]. Journal of Mining & Safety Engineering,2018,35(1):140-145.
    [10] 张宏伟,荣海,陈建强,等. 基于地质动力区划的近直立特厚煤层冲击地压危险性评价[J]. 煤炭学报,2015,40(12):2755-2762.

    ZHANG Hongwei,RONG Hai,CHEN Jianqiang,et al. Risk assessment of rockburst based on geo-dynamic division method in suberect and extremely thick coal seam[J]. Journal of China Coal Society,2015,40(12):2755-2762.
    [11] 钟涛平,李振雷,陈建强,等. 近直立特厚煤层应力调控防冲方法及机制[J]. 中国矿业大学学报,2024,53(2):291-306.

    ZHONG Taoping,LI Zhenlei,CHEN Jianqiang,et al. Method and mechanism of rock burst prevention in the steeply inclined extremely thick coal seam through stress regulation[J]. Journal of China University of Mining & Technology,2024,53(2):291-306.
    [12] 崔峰,张随林,来兴平,等. 急倾斜巨厚煤层组开采煤岩体联动诱冲机制与防冲调控[J]. 岩石力学与工程学报,2023,42(增刊1):3226-3241.

    CUI Feng,ZHANG Suilin,LAI Xingping,et al. Coal and rock mass linkage induced impact mechanism and prevention and control rock burst in steeply-inclined and extremely-thick coal seam group[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(S1):3226-3241.
    [13] 吴振华,潘鹏志,赵善坤,等. 近直立特厚煤层组“顶板−岩柱”诱冲机理及防控实践[J]. 煤炭学报,2021,46(增刊1):49-62.

    WU Zhenhua,PAN Pengzhi,ZHAO Shankun,et al. Mechanism of rock bursts caused by "roof-rock pillar" in mining steeply-inclined and its prevention and treatment[J]. Journal of China Coal Society,2021,46(S1):49-62.
    [14] 李安宁,窦林名,王正义,等. 近直立煤层水平分段开采夹持煤体型冲击机理及防治[J]. 煤炭学报,2018,43(12):3302-3308.

    LI Anning,DOU Linming,WANG Zhengyi,et al. Rock-burst mechanism and prevention of clamping coal in mining near-vertical coal seam with horizontal slice method[J]. Journal of China Coal Society,2018,43(12):3302-3308.
    [15] 蓝航. 近直立特厚两煤层同采冲击地压机理及防治[J]. 煤炭学报,2014,39(增刊2):308-315.

    LAN Hang. Rock-burst mechanism and prevention in mining sub-erect and extremely-thick coal seam with horizontal slicing method[J]. Journal of China Coal Society,2014,39(S2):308-315.
    [16] 欧阳振华,周鑫鑫,孙秉成,等. 近直立煤层冲击地压自保护卸压机制与防控[J]. 中国安全科学学报,2021,31(4):64-71.

    OUYANG Zhenhua,ZHOU Xinxin,SUN Bingcheng,et al. Self-protection pressure relief mechanism and prevention and control of rock burst in near-vertical coal seams[J]. China Safety Science Journal,2021,31(4):64-71.
    [17] 荣海,张宏伟,朱志洁,等. 近直立特厚冲击煤层保护层优选方案研究[J]. 安全与环境学报,2019,19(4):1182-1191.

    RONG Hai,ZHANG Hongwei,ZHU Zhijie,et al. Optimization scheme in mining in hope to protect the ultra-thick suberect coal seams off the potential rockburst risks[J]. Journal of Safety and Environment,2019,19(4):1182-1191.
    [18] 高明仕,赵一超,高晓君,等. 近直立特厚煤层组中间岩板诱发冲击矿压机理及其防治[J]. 采矿与安全工程学报,2019,36(2):298-305.

    GAO Mingshi,ZHAO Yichao,GAO Xiaojun,et al. Study on the mechanism of rock bursts caused by rock plates between subvertical extra-thick coal seams and its prevention and treatment[J]. Journal of Mining & Safety Engineering,2019,36(2):298-305.
    [19] 李东辉,何学秋,陈建强,等. 乌东煤矿近直立煤层冲击地压机制研究[J]. 中国矿业大学学报,2020,49(5):835-843.

    LI Donghui,HE Xueqiu,CHEN Jianqiang,et al. Inducing mechanism of rockburst occurring in steeply-inclined coal seam of Wudong Coal Mine[J]. Journal of China University of Mining & Technology,2020,49(5):835-843.
    [20] 刘传义,杨胜利,冯攀飞,等. 近直立煤层群水平分段开采应力分布与演化特征[J]. 煤矿安全,2022,53(1):205-211.

    LIU Chuanyi,YANG Shengli,FENG Panfei,et al. Stress distribution and evolution characteristics in horizontal layered mining of steeply inclined coal seams[J]. Safety in Coal Mines,2022,53(1):205-211.
    [21] 王家臣,杨胜利,李良晖. 急倾斜煤层水平分段综放顶板“倾倒−滑塌”破坏模式[J]. 中国矿业大学学报,2018,47(6):1175-1184.

    WANG Jiachen,YANG Shengli,LI Lianghui. Toppling-slumping failure mode in horizontal sublevel top-coal caving face in steeply-inclined seam[J]. Journal of China University of Mining & Technology,2018,47(6):1175-1184.
    [22] 王家臣,魏炜杰,张锦旺,等. 急倾斜厚煤层走向长壁综放开采支架稳定性分析[J]. 煤炭学报,2017,42(11):2783-2791.

    WANG Jiachen,WEI Weijie,ZHANG Jinwang,et al. Stability analysis of support around the longwall top-coal caving mining in steeply thick coal seam[J]. Journal of China Coal Society,2017,42(11):2783-2791.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  14
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-31
  • 修回日期:  2024-09-10
  • 网络出版日期:  2024-09-14

目录

    /

    返回文章
    返回