Research on filling, pressure relief, and rock burst prevention in horizontal sublevel fully mechanized top coal caving of near-vertical coal seam groups
-
摘要: 目前近直立煤层开采冲击地压防治措施主要有爆破、水压致裂、建立保护层等,或破坏层间岩柱和顶底板,或难以解决大采深情况下的层间岩柱应力集中问题,且会导致较大的地表沉降。以乌东煤矿为工程背景,针对近直立煤层群水平分段综放开采方法,提出了充填采空区技术,以支护层间岩柱及顶底板,降低开采分段周围煤岩体的应力集中现象。设计了3种充填方案:方案1为第一开采分段采空区使用高强度材料充填,其余分段采用普通材料充填;方案2为第一开采分段采空区使用高强度材料充填,其余分段交替采用高强度材料和普通材料充填;方案3为每一分段采空区均使用高强度材料充填。通过数值模拟研究了3种充填方案的卸压防冲效果,结果表明:与未充填相比,3种充填方案下层间岩柱最大垂直应力分别下降25.07%,26.57%,29.23%,下一分段煤体最大水平应力分别下降10.63%,10.79%,12.34%。综合考虑卸压效果和经济效益,优选间隔充填的方案3。指出可结合高应力区域实时智能监测技术,及时支撑层间岩柱,减少层间岩柱及下分段煤体的应力集中,防止冲击地压发生。Abstract: Current rock burst prevention measures for near-vertical coal seam mining primarily include blasting, hydraulic fracturing, and the establishment of protective layers. These measures either damage interlayer rock pillars and roof/floor strata or prove inadequate in resolving stress concentration in interlayer rock pillars at large mining depths, often resulting in significant surface subsidence. Using the Wudong Coal Mine as the engineering context, this study proposed a filling technique for goafs in horizontal sublevel fully mechanized top coal caving of near-vertical coal seam groups. This technique was intended to support interlayer rock pillars and roof/floor strata, reducing stress concentration in the surrounding coal and rock masses of the mining segments. Three filling schemes were designed: Scheme 1 involved filling the goaf in the first mining segment with high-strength materials, with ordinary materials used in other segments; Scheme 2 involved filling the goaf in the first segment with high-strength materials, with alternating high-strength and ordinary materials in other segments; and Scheme 3 involved filling the goaf in each segment with high-strength materials. Numerical simulations were conducted to assess the pressure relief and rock burst prevention effectiveness of the three schemes. Results indicated that, compared to no filling, the maximum vertical stress in interlayer rock pillars decreased by 25.07%, 26.57%, and 29.23% under the three schemes, respectively, while the maximum horizontal stress in the coal body of the subsequent segment decreased by 10.63%, 10.79%, and 12.34%, respectively. Considering both pressure relief effectiveness and economic feasibility, Scheme 3 with interval filling was identified as the optimal solution. It was suggested that this approach be combined with real-time intelligent monitoring technology in high-stress areas to promptly support interlayer rock pillars, thus reducing stress concentration and preventing rock bursts.
-
表 1 数值模型参数
Table 1. Parameters of numerical model
岩层 密度/
(kg·m−3)体积模
量/GPa剪切模
量/GPa内摩擦
角/(°)黏聚力/
MPa抗拉强
度/MPaB1+2基本底 2 752 15.9 10.1 32 5.7 5.2 B1+2直接底 2 478 8.3 6.4 28 2.4 1.9 B1+2煤层 1 318 5.8 4.3 25 1.2 1.4 B1+2直接顶 2 509 8.3 6.4 28 2.4 1.9 B1+2 基本顶 2 724 15.9 10.1 32 5.7 5.2 B3+6基本底 2 724 15.9 10.1 32 5.7 5.2 B3+6直接底 2 509 8.3 6.4 28 2.4 1.9 B3+6 煤层 1 336 5.8 4.3 25 1.2 1.4 B3+6直接顶 2 476 8.3 6.4 28 2.4 1.9 B3+6基本顶 2 813 15.9 10.1 32 5.7 5.2 边界岩柱 2 724 13.6 8.9 30 5.4 4.3 黄土层 1 790 0.005 56 0.001 85 10.5 0.01 0 表 2 数值模型充填方案
Table 2. Filling schemes of numerical model
编号 方案 1 未进行充填 2 在+700~+675 m的第一开采分段采空区使用高强度材料充填,之后采用普通材料充填 3 在+700~+675 m的第一开采分段采空区使用高强度材料充填,之后对B1+2煤层和B3+6煤层交替使用高强度材料和普通材料,即每隔一分段进行高强度材料充填,其他分段使用普通材料充填 4 对B1+2煤层和B3+6煤层的每一分段采空区进行高强度材料充填 -
[1] 阎跃观,戴华阳,王忠武,等. 急倾斜多煤层开采地表沉陷分区与围岩破坏机理——以木城涧煤矿大台井为例[J]. 中国矿业大学学报,2013,42(4):547-553.YAN Yueguan,DAI Huayang,WANG Zhongwu, et al. Ground subsidence zone and surrounding rock failure mechanism due to steep multiple coal seam mining:a case study at Muchenyjian Datai Mine[J]. Journal of China University of Mining & Technology,2013,42(4):547-553. [2] 王家臣,张锦旺,王兆会. 放顶煤开采基础理论与应用[M]. 北京:科学出版社,2018:6-10.WANG Jiachen,ZHANG Jinwang,WANG Zhaohui. Fundamental theory and application of top coal caving[M]. Beijing:Science Publishing House,2018:6-10. [3] 杜计平,孟宪锐. 采矿学[M]. 徐州:中国矿业大学出版社,2014:158-161.DU Jiping,MENG Xianrui. Mining engineering[M]. Xuzhou:China University of Mining and Technology Press,2014:158-161. [4] 贺林. 乌鲁木齐矿区急倾斜煤层开采地表移动变形规律研究[D]. 西安:西安科技大学,2008.HE Lin. Study on the rule of ground movement and deformation in steep coal seam mining of Urumchi mining area[D]. Xi'an:Xi'an University of Science and Technology,2008. [5] 王家臣. 我国综放开采40年及展望[J]. 煤炭学报,2023,48(1):83-99.WANG Jiachen. 40 years development and prospect of longwall top coal caving in China[J]. Journal of China Coal Society,2023,48(1):83-99. [6] 张锦旺,程东亮,王家臣,等. 水平分段综放开采顶煤放出体理论计算模型[J]. 煤炭学报,2023,48(2):576-592.ZHANG Jinwang,CHENG Dongliang,WANG Jiachen,et al. Theoretical calculation model of top coal drawing body in horizontal sublevel top coal caving mining[J]. Journal of China Coal Society,2023,48(2):576-592. [7] 陈建强,宋大钊,常博,等. 近直立煤层冲击危险静动态评价方法研究[J]. 煤炭科学技术,2023,51(9):24-34.CHEN Jianqiang,SONG Dazhao,CHANG Bo,et al. Static-dynamic rockburst risk assessment method in near-vertical coal seams[J]. Coal Science and Technology,2023,51(9):24-34. [8] 袁崇亮,王永忠,施现院,等. 近直立特厚煤层分段综放夹持煤柱冲击机理[J]. 采矿与安全工程学报,2023,40(1):60-68.YUAN Chongliang,WANG Yongzhong,SHI Xianyuan,et al. Impact mechanism of clamped coal pillar in sublevel fully mechanized top coal caving in the near vertical extra thick coal seam[J]. Journal of Mining & Safety Engineering,2023,40(1):60-68. [9] 杜涛涛,李康,蓝航,等. 近直立特厚煤层冲击地压致灾过程分析[J]. 采矿与安全工程学报,2018,35(1):140-145.DU Taotao,LI Kang,LAN Hang,et al. Rockburst process analysis in steeply-inclined extremely-thick coal seam[J]. Journal of Mining & Safety Engineering,2018,35(1):140-145. [10] 张宏伟,荣海,陈建强,等. 基于地质动力区划的近直立特厚煤层冲击地压危险性评价[J]. 煤炭学报,2015,40(12):2755-2762.ZHANG Hongwei,RONG Hai,CHEN Jianqiang,et al. Risk assessment of rockburst based on geo-dynamic division method in suberect and extremely thick coal seam[J]. Journal of China Coal Society,2015,40(12):2755-2762. [11] 钟涛平,李振雷,陈建强,等. 近直立特厚煤层应力调控防冲方法及机制[J]. 中国矿业大学学报,2024,53(2):291-306.ZHONG Taoping,LI Zhenlei,CHEN Jianqiang,et al. Method and mechanism of rock burst prevention in the steeply inclined extremely thick coal seam through stress regulation[J]. Journal of China University of Mining & Technology,2024,53(2):291-306. [12] 崔峰,张随林,来兴平,等. 急倾斜巨厚煤层组开采煤岩体联动诱冲机制与防冲调控[J]. 岩石力学与工程学报,2023,42(增刊1):3226-3241.CUI Feng,ZHANG Suilin,LAI Xingping,et al. Coal and rock mass linkage induced impact mechanism and prevention and control rock burst in steeply-inclined and extremely-thick coal seam group[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(S1):3226-3241. [13] 吴振华,潘鹏志,赵善坤,等. 近直立特厚煤层组“顶板−岩柱”诱冲机理及防控实践[J]. 煤炭学报,2021,46(增刊1):49-62.WU Zhenhua,PAN Pengzhi,ZHAO Shankun,et al. Mechanism of rock bursts caused by "roof-rock pillar" in mining steeply-inclined and its prevention and treatment[J]. Journal of China Coal Society,2021,46(S1):49-62. [14] 李安宁,窦林名,王正义,等. 近直立煤层水平分段开采夹持煤体型冲击机理及防治[J]. 煤炭学报,2018,43(12):3302-3308.LI Anning,DOU Linming,WANG Zhengyi,et al. Rock-burst mechanism and prevention of clamping coal in mining near-vertical coal seam with horizontal slice method[J]. Journal of China Coal Society,2018,43(12):3302-3308. [15] 蓝航. 近直立特厚两煤层同采冲击地压机理及防治[J]. 煤炭学报,2014,39(增刊2):308-315.LAN Hang. Rock-burst mechanism and prevention in mining sub-erect and extremely-thick coal seam with horizontal slicing method[J]. Journal of China Coal Society,2014,39(S2):308-315. [16] 欧阳振华,周鑫鑫,孙秉成,等. 近直立煤层冲击地压自保护卸压机制与防控[J]. 中国安全科学学报,2021,31(4):64-71.OUYANG Zhenhua,ZHOU Xinxin,SUN Bingcheng,et al. Self-protection pressure relief mechanism and prevention and control of rock burst in near-vertical coal seams[J]. China Safety Science Journal,2021,31(4):64-71. [17] 荣海,张宏伟,朱志洁,等. 近直立特厚冲击煤层保护层优选方案研究[J]. 安全与环境学报,2019,19(4):1182-1191.RONG Hai,ZHANG Hongwei,ZHU Zhijie,et al. Optimization scheme in mining in hope to protect the ultra-thick suberect coal seams off the potential rockburst risks[J]. Journal of Safety and Environment,2019,19(4):1182-1191. [18] 高明仕,赵一超,高晓君,等. 近直立特厚煤层组中间岩板诱发冲击矿压机理及其防治[J]. 采矿与安全工程学报,2019,36(2):298-305.GAO Mingshi,ZHAO Yichao,GAO Xiaojun,et al. Study on the mechanism of rock bursts caused by rock plates between subvertical extra-thick coal seams and its prevention and treatment[J]. Journal of Mining & Safety Engineering,2019,36(2):298-305. [19] 李东辉,何学秋,陈建强,等. 乌东煤矿近直立煤层冲击地压机制研究[J]. 中国矿业大学学报,2020,49(5):835-843.LI Donghui,HE Xueqiu,CHEN Jianqiang,et al. Inducing mechanism of rockburst occurring in steeply-inclined coal seam of Wudong Coal Mine[J]. Journal of China University of Mining & Technology,2020,49(5):835-843. [20] 刘传义,杨胜利,冯攀飞,等. 近直立煤层群水平分段开采应力分布与演化特征[J]. 煤矿安全,2022,53(1):205-211.LIU Chuanyi,YANG Shengli,FENG Panfei,et al. Stress distribution and evolution characteristics in horizontal layered mining of steeply inclined coal seams[J]. Safety in Coal Mines,2022,53(1):205-211. [21] 王家臣,杨胜利,李良晖. 急倾斜煤层水平分段综放顶板“倾倒−滑塌”破坏模式[J]. 中国矿业大学学报,2018,47(6):1175-1184.WANG Jiachen,YANG Shengli,LI Lianghui. Toppling-slumping failure mode in horizontal sublevel top-coal caving face in steeply-inclined seam[J]. Journal of China University of Mining & Technology,2018,47(6):1175-1184. [22] 王家臣,魏炜杰,张锦旺,等. 急倾斜厚煤层走向长壁综放开采支架稳定性分析[J]. 煤炭学报,2017,42(11):2783-2791.WANG Jiachen,WEI Weijie,ZHANG Jinwang,et al. Stability analysis of support around the longwall top-coal caving mining in steeply thick coal seam[J]. Journal of China Coal Society,2017,42(11):2783-2791.