Relative dynamics modeling and force-position hybrid control of dual-arm cutting robot
-
摘要: 双悬臂截割机器人可解决传统单臂掘进机在截割大尺寸断面时效率低下的难题,但其与煤岩的动态交互影响控制性能。现有研究以双臂接触同一对象形成运动闭链为前提,无法满足双悬臂截割机器人双臂运动及末端截割头输出力的控制要求。针对该问题,设计了一种基于机器人相对动力学模型的力位混合控制系统。建立双悬臂截割机器人运动学和动力学模型,基于机器人的相对雅可比矩阵及虚位移与虚功原理推导出机器人的相对动力学模型,通过单一变量同时描述机器人双臂的运动状态,将机器人双臂独立的动力学模型整合为一个整体。基于机器人的相对动力学模型,设计了机器人双臂力位混合控制系统,通过李雅普诺夫函数验证了系统的稳定性和可行性。仿真结果表明:双悬臂截割工艺较单悬臂截割拥有更大的工作空间,具有一次性实现大断面截割的能力;双悬臂截割机器人力位混合控制系统能够完成对期望相对位置和期望相对力的同步跟踪,对截割头期望位置跟踪的绝对误差在0.313 2 m以内,均方根误差为0.144 7 m。Abstract: The dual-arm cutting robot addresses the low efficiency of traditional single-arm roadheaders when cutting large cross-sections. However, its dynamic interaction with coal-rock affects control performance. In current studies, both arms of the dual-arm cutting robot interact with the same object, forming a closed kinematic chain, which fails to meet the control requirements for independent arm movement and the output force of each cutting head. To solve this issue, a force-position hybrid control system based on the robot’s relative dynamics model was designed. The kinematic and dynamics models of the dual-arm cutting robot were established, with the relative dynamics model derived using the robot’s relative Jacobian matrix and principles of virtual displacement and virtual work. This model used a single variable to describe the motion states of both arms, integrating their independent dynamics models into a unified one. Based on this relative dynamics model, a force-position hybrid control system was developed for the robot’s dual arms, with system stability and feasibility verified via the Lyapunov function. Simulation results indicated that the dual-arm cutting process had a larger workspace compared to single-arm cutting, allowing for efficient large cross-section cutting. The force-position hybrid control system enabled synchronized tracking of expected relative position and force, with the absolute error in tracking the target cutter position kept within 0.3132 m and a root mean square error of 0.1447 m.
-
表 1 双悬臂截割机器人的D−H参数
Table 1. D-H parameters of dual-arm cutting robot
关节编号 θi/rad di/m ai/m αi/rad i=1 [0, π/2] 0 a1 0 i=2 [−π/2,0] 0 1 π/2 i=3 [0, π/2] 0 [4.18,4.73] 0 i=4 [−π/2,0] 0 a4 0 i=5 [0, π/2] 0 1 π/2 i=6 [0, π/2] 0 [4.18,4.73] 0 表 2 处于S形轨迹拐点处的双悬臂截割机器人关节变量
Table 2. Joint variables of dual-arm cutting robot at inflection points of S-shaped trajectories
端点
序号移动平台
推移量/mθ2/rad θ3/rad a3/m θ5/rad θ6/rad a6/m 1 1.0 0 π/3 4.73 0 π/3 4.73 2 1.1 −π/2 π/3 4.18 π/2 π/3 4.18 3 1.3 −π/2 2π/9 4.18 π/2 2π/9 4.18 4 1.5 0 2π/9 4.73 0 2π/9 4.73 5 1.7 0 π/9 4.18 0 π/9 4.18 6 1.9 −π/2 π/9 4.73 π/2 π/9 4.73 7 2.1 −π/2 0 4.18 π/2 0 4.18 8 2.3 0 0 4.73 0 0 4.73 -
[1] 张旭辉,刘永伟,毛清华,等. 煤矿悬臂式掘进机智能控制技术研究及进展[J]. 重型机械,2018(2):22-27.ZHANG Xuhui,LIU Yongwei,MAO Qinghua,et al. Research and progress on intelligent control technology of boom-type roadheader in coal mine[J]. Heavy Machinery,2018(2):22-27. [2] 马宏伟,王鹏,张旭辉,等. 煤矿巷道智能掘进机器人系统关键技术研究[J]. 西安科技大学学报,2020,40(5):751-759.MA Hongwei,WANG Peng,ZHANG Xuhui,et al. Research on key technology of intelligent tunneling robotic system in coal mine[J]. Journal of Xi'an University of Science and Technology,2020,40(5):751-759. [3] CABALLERO A,BEJAR M,RODRIGUEZ-CASTAÑO A,et al. Motion planning with dynamics awareness for long reach manipulation in aerial robotic systems with two arms[J]. International Journal of Advanced Robotic Systems,2018,15(3):172988141877052-172988141877052. [4] SHEN Haoyu,LIU Yanli,WU Hongtao. High effective inverse dynamics modelling for dual-arm robot[J]. AIP Conference Proceedings,2018,1967(1). DOI: 10.1063/1.5039135. [5] WANG Jian,WANG Jian,ZHOU Lili,et al. Dynamic modeling and cooperative process simulation in cooperative dual-arm robot based on adams[J]. Journal of Physics:Conference Series,2020,1621(1). DOI: 10.1088/1742-6596/1621/1/012041. [6] 程靖,陈力. 空间机器人双臂捕获航天器后姿态管理、辅助对接操作一体化ELM神经网络控制[J]. 机器人,2017,39(5):724-732.CHENG Jing,CHEN Li. ELM neural network control of attitude management and auxiliary docking maneuver after dual-arm space robot capturing spacecraft[J]. Robot,2017,39(5):724-732. [7] 刘佳,刘荣. 双臂协调机械手动力学建模的新方法[J]. 北京航空航天大学学报,2016,42(9):1903-1910.LIU Jia,LIU Rong. New approach for dynamics modeling of dual-arm cooperating manipulators[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(9):1903-1910. [8] JAMISOLA R,IBIKUNLE F. Investigating task prioritization and holistic coordination using relative Jacobian for combined 3-arm cooperating parallel manipulators[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics,2016,20(1):117-123. doi: 10.20965/jaciii.2016.p0117 [9] 董楸煌,陈力,李海芸,等. 双臂空间机器人捕获目标的力/位协调控制[J]. 系统仿真学报,2017,29(2):424-429.DONG Qiuhuang,CHEN Li,LI Haiyun,et al. Force/position control for dual-arm space robot capturing object[J]. Journal of System Simulation,2017,29(2):424-429. [10] 张建华,许晓林,刘璇,等. 双臂协调机器人相对动力学建模[J]. 机械工程学报,2019,55(3):34-42. doi: 10.3901/JME.2019.03.034ZHANG Jianhua,XU Xiaolin,LIU Xuan,et al. Relative dynamic modeling of dual-arm coordination robot[J]. Journal of Mechanical Engineering,2019,55(3):34-42. doi: 10.3901/JME.2019.03.034 [11] 王登峰,王丽娟,徐敏. 关节一体化机器人动力学建模与伺服系统控制[J]. 组合机床与自动化加工技术,2018(8):112-117,123.WANG Dengfeng,WANG Lijuan,XU Min. Dynamic modeling and servo system control of joint robot[J]. Modular Machine Tool & Automatic Manufacturing Technique,2018(8):112-117,123. [12] JING Xin,GAO Haibo,WANG Yaobing,et al. Cooperative compliance control of the dual-arm manipulators with elastic joints[J]. Journal of Mechanical Science and Technology,2021,35(12):5689-5697. doi: 10.1007/s12206-021-1138-3 [13] 艾海平,陈力. 空间机器人双臂捕获航天器操作的力/位置控制[J]. 哈尔滨工程大学学报,2020,41(12):1847-1853.AI Haiping,CHEN Li. Force/position fuzzy control of space robot capturing spacecraft by dual-arm clamping[J]. Journal of Harbin Engineering University,2020,41(12):1847-1853. [14] ZHANG Fuhai,QU Jiadi,LIU He,et al. A pose/force symmetric coordination method for a redundant dual-arm robot[J]. Assembly Automation,2018,38(5):678-688. doi: 10.1108/AA-12-2017-171 [15] JIANG Yiming,WANG Yaonan,MIAO Zhiqiang,et al. Composite-learning-based adaptive neural control for dual-arm robots with relative motion[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,33(3):1010-1021. [16] JIANG Wei,YAN Yu,YU Lianqing,et al. Research on dual-arm coordination motion control strategy for power cable mobile robot[J]. Transactions of the Institute of Measurement and Control,2019,41(1). DOI: 10.1177/0142331218822717. [17] 赵明辉. 双臂并联煤矸石分拣机器人及其轨迹规划研究[J]. 工矿自动化,2020,46(9):57-63.ZHAO Minghui. Research on dual-arm parallel coal gangue sorting robot and its trajectory planning[J]. Industry and Mine Automation,2020,46(9):57-63. [18] 李贺立,杨冬,杨德志,等. 基于阻抗控制的双臂机器人协调搬运方法研究[J]. 机床与液压,2017,45(21):64-67,91.LI Heli,YANG Dong,YANG Dezhi,et al. Research for dual-arm robot coordinated handling methods based on impedance control[J]. Machine Tool & Hydraulics,2017,45(21):64-67,91. [19] 刘江文,徐敏. 双臂机器人动力学建模与伺服系统控制[J]. 机械设计与制造,2019(11):256-260.LIU Jiangwen,XU Min. Dynamic modeling and servo system control of dual-arm[J]. Machinery Design & Manufacture,2019(11):256-260. [20] 郑晓薇,胡陟,倪双涛,等. 基于力同步的双臂手术机器人自适应阻抗控制[J]. 传感器与微系统,2023,42(4):95-98.ZHENG Xiaowei,HU Zhi,NI Shuangtao,et al. Adaptive impedance control of dual-arm surgical robot based on force synchronization[J]. Transducer and Microsystem Technologies,2023,42(4):95-98. [21] 张磊,周开平,张宁波,等. 悬臂式掘进机自动截割控制系统研究[J]. 金属矿山,2022(6):144-149.ZHANG Lei,ZHOU Kaiping,ZHANG Ningbo,et al. Research on automatic cutting control system of cantilever roadheader[J]. Metal Mine,2022(6):144-149.