留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低可见度环境下基于改进YOLOv3的井下人员定位方法

路晓亚 李海芳

路晓亚,李海芳. 低可见度环境下基于改进YOLOv3的井下人员定位方法[J]. 工矿自动化,2024,50(9):130-137.  doi: 10.13272/j.issn.1671-251x.2024070085
引用本文: 路晓亚,李海芳. 低可见度环境下基于改进YOLOv3的井下人员定位方法[J]. 工矿自动化,2024,50(9):130-137.  doi: 10.13272/j.issn.1671-251x.2024070085
LU Xiaoya, LI Haifang. Personnel localization method for low-visibility environments based on improved YOLOv3[J]. Journal of Mine Automation,2024,50(9):130-137.  doi: 10.13272/j.issn.1671-251x.2024070085
Citation: LU Xiaoya, LI Haifang. Personnel localization method for low-visibility environments based on improved YOLOv3[J]. Journal of Mine Automation,2024,50(9):130-137.  doi: 10.13272/j.issn.1671-251x.2024070085

低可见度环境下基于改进YOLOv3的井下人员定位方法

doi: 10.13272/j.issn.1671-251x.2024070085
基金项目: 河南省科技攻关项目(242102210111)。
详细信息
    作者简介:

    路晓亚(1983—),女,河南商丘人,副教授,硕士,研究方向为计算机技术,E-mail:lxy36214@163.com

  • 中图分类号: TD655.3

Personnel localization method for low-visibility environments based on improved YOLOv3

  • 摘要: 煤矿井下光照不足、粉尘遮挡,井下视频监控系统采集的人员目标在二维图像中表现为小目标或低可见度目标时,原始YOLOv3网络的Darknet53特征金字塔结构无法充分提取和保留目标的细节信息,导致定位结果不准确。针对上述问题,提出了一种低可见度环境下基于改进YOLOv3的井下人员定位方法。首先,结合β函数映射和帧间信息增强技术,提升低可见度环境下煤矿井下监控视频的清晰度。然后,采用更轻量级的Darknet−19替代YOLOv3中的Darknet53,并引入CIoU作为损失函数,利用改进YOLOv3识别增强后视频中的井下人员目标。最后,基于映射模型将识别到的目标从二维空间投影至三维空间,结合三维定位结果完成井下人员定位。选用某煤矿一段低可见度环境下井下监控视频进行实验,结果表明:① 经过基于改进YOLOv3的井下人员定位方法处理后的视频帧亮度、可见度和各项评价指标(平均灰度、平均对比度、信息熵与灰度谱带宽)较原始视频均有明显提升,整体光照条件得到显著改善,且处理后的视频帧对比度得到增强,目标和背景之间更易区分,证明了采用的图像增强技术的有效性。② 改进YOLOv3模型能准确识别视频帧中的井下工作人员,不存在漏识别问题。③ 采用已知位置的标定物或人工标注的的真实三维位置作为基准,计算投影结果与真实位置之间的偏差(偏差计算涵盖XYZ方向上的距离偏差),其中X方向和Y方向上的偏差均小于0.2 m,Z方向上的偏差小于0.002 m,表明构建的映射模型的映射效果好且定位精度较高。

     

  • 图  1  改进YOLOv3结构和具体参数

    Figure  1.  Improved YOLOv3 structure and specific parameters

    图  2  原始图像

    Figure  2.  Original images

    图  3  改进 YOLOv3处理后图像

    Figure  3.  Images processed by improved YOLOv3

    图  4  YOLOv3模型识别结果

    Figure  4.  Recognition results of YOLOv3 model

    图  5  改进YOLOv3模型识别结果

    Figure  5.  Recognition results of improved YOLOv3 model

    图  6  不同方法定位偏差对比

    Figure  6.  Comparison of localization deviations using different methods

    表  1  不同方法客观评价结果

    Table  1.   Objective evaluation results of different methods

    评价指标 平均灰度 平均对比度 信息熵/bit 灰度谱带宽
    原始图像 8.19 1.58 4.34 0.56
    本文方法 76.45 12.11 7.09 1.00
    下载: 导出CSV
  • [1] 郭文兵,吴东涛,白二虎,等. 我国煤矿智能绿色开采技术现状与展望[J]. 河南理工大学学报(自然科学版),2023,42(5):1-17.

    GUO Wenbing,WU Dongtao,BAI Erhu,et al. Current situation and prospect of intelligent green mining technology in coal mines in China[J]. Journal of Henan Polytechnic University(Natural Science),2023,42(5):1-17.
    [2] 温贤培. 煤矿现场人员二维精确定位方法[J]. 煤矿安全,2023,54(1):225-229.

    WEN Xianpei. Two-dimensional precise positioning method of coal mine field personnel[J]. Safety in Coal Mines,2023,54(1):225-229.
    [3] 张寻梦,赵子皓,江晓东. 基于图像和YOLOv3的番茄果实表型参数计算及重量模拟[J]. 江苏农业科学,2023,51(10):193-201.

    ZHANG Xunmeng,ZHAO Zihao,JIANG Xiaodong. Phenotypic parameter calculation and weight simulation of tomato fruit based on image and YOLOv3[J]. Jiangsu Agricultural Sciences,2023,51(10):193-201.
    [4] 刘晓阳,郑昊琳,刘金强,等. 基于压缩感知改进SP算法的井下人员定位方法[J]. 煤炭技术,2022,41(5):164-167.

    LIU Xiaoyang,ZHENG Haolin,LIU Jinqiang,et al. Method of underground personnel location based on compressed sensing and improved SP algorithm[J]. Coal Technology,2022,41(5):164-167.
    [5] WU Bin. Algorithm of underground personnel positioning based on improved Monte Carlo[J]. Wireless Communications and Mobile Computing,2021. DOI: 10.1155/2021/5547944.
    [6] 王智勇,张宏伟,卜旭辉. 基于UWB与指纹定位的矿井移动目标TOA定位算法[J]. 矿业研究与开发,2024,44(3):192-200.

    WANG Zhiyong,ZHANG Hongwei,BU Xuhui. TOA localization algorithm of underground mine moving target based on UWB and fingerprint localization[J]. Mining Research and Development,2024,44(3):192-200.
    [7] CAO Bo,WANG Shibo,GE Shirong,et al. Improving the positioning accuracy of UWB system for complicated underground NLOS environments[J]. IEEE Systems Journal,2021,16(2):1808-1819.
    [8] 牛宏侠,王春智. 基于HSI空间的沙尘图像增强算法[J]. 北京交通大学学报,2022,46(5):1-8.

    NIU Hongxia,WANG Chunzhi. Sand-dust image enhancement algorithm based on HSI space[J]. Journal of Beijing Jiaotong University,2022,46(5):1-8.
    [9] 张勇,周斌,王建斌. 多尺度Retinex低照度图像增强的ZYNQ实现[J]. 火力与指挥控制,2023,48(7):156-162.

    ZHANG Yong,ZHOU Bin,WANG Jianbin. Implementation of low-illumination image enhancement based on multi-scale Retinex on ZYNQ[J]. Fire Control & Command Control,2023,48(7):156-1622.
    [10] 王仁智,孔雅,张春泽. 一种支持任意码率的高斯低通滤波器设计[J]. 电子技术应用,2021,47(7):61-63,68.

    WANG Renzhi,KONG Ya,ZHANG Chunze. Design of a Gaussian low pass filter with arbitrary bit rate[J]. Application of Electronic Technique,2021,47(7):61-63,68.
    [11] 刘雄彪,杨贤昭,陈洋,等. 基于CIoU改进边界框损失函数的目标检测方法[J]. 液晶与显示,2023,38(5):656-665. doi: 10.37188/CJLCD.2022-0282

    LIU Xiongbiao,YANG Xianzhao,CHEN Yang,et al. Object detection method based on CIoU improved bounding box loss function[J]. Chinese Journal of Liquid Crystals and Displays,2023,38(5):656-665. doi: 10.37188/CJLCD.2022-0282
    [12] 李功,赵巍,刘鹏,等. 一种用于目标跟踪边界框回归的光滑IoU损失[J]. 自动化学报,2023,49(2):288-306.

    LI Gong,ZHAO Wei,LIU Peng,et al. Smooth-IoU loss for bounding box regression in visual tracking[J]. Acta Automatica Sinica,2023,49(2):288-306.
    [13] 张莹,严伟. 基于小孔成像光斑的无衍射光分布测量系统[J]. 现代电子技术,2021,44(13):106-110.

    ZHANG Ying,YAN Wei. Non-diffracted light distribution measurement system based on pinhole imaging light spot[J]. Modern Electronics Technique,2021,44(13):106-110.
    [14] 吴柔莞,徐智勇,张建林. 基于无监督级联的亚像素单应矩阵估计[J]. 半导体光电,2022,43(1):158-163.

    WU Rouwan,XU Zhiyong,ZHANG Jianlin. Sub-pixel homography matrix estimation based on unsupervised cascade[J]. Semiconductor Optoelectronics,2022,43(1):158-163.
    [15] 李静. 基于最小二乘法的空间坐标转换的非迭代算法[J]. 数学的实践与认识,2022,52(9):115-120.

    LI Jing. A Non-iterative algorithm for spatial coordinate transformation based on least square method[J]. Mathematics in Practice and Theory,2022,52(9):115-120.
    [16] 谭超,朱荣钊. 基于改进LANDMARC定位算法的人员定位技术研究[J]. 长春工程学院学报(自然科学版),2024,25(1):90-95. doi: 10.3969/j.issn.1009-8984.2024.01.017

    TAN Chao,ZHU Rongzhao. Research on personnel positioning technology based on improved LANDMARC positioning algorithm[J]. Journal of Changchun Institute of Technology(Natural Sciences Edition),2024,25(1):90-95. doi: 10.3969/j.issn.1009-8984.2024.01.017
    [17] 李明锋,李䶮,刘用,等. 基于5G+UWB和惯导技术的井下人员定位系统[J]. 工矿自动化,2024,50(1):25-34.

    LI Mingfeng,LI Yan,LIU Yong,et al. Underground personnel positioning system based on 5G+UWB and inertial navigation technology[J]. Journal of Mine Automation,2024,50(1):25-34.
    [18] 李飞,潘红光,魏绪强,等. 基于PDR算法与伪平面技术的井下人员定位方法研究[J]. 西安科技大学学报,2024,44(3):587-596.

    LI Fei,PAN Hongguang,WEI Xuqiang,et al. Research on positioning method of underground personnel in coal mines based on PDR algorithm and pseudo-plane technology[J]. Journal of Xi'an University of Science and Technology,2024,44(3):587-596.
    [19] 牛春祥,姚善化. 基于Chan−PF的TDOA井下人员定位算法研究[J]. 无线互联科技,2024,21(1):103-106.

    NIU Chunxiang,YAO Shanhua. Research on TDOA underground personnel location algorithm based on Chan-PF[J]. Wireless Internet Science and Technology,2024,21(1):103-106.
    [20] 朱劲磊,梁均海,付志超,等. 基于TDOA算法的基建现场施工人员定位研究[J]. 自动化仪表,2024,45(4):9-13.

    ZHU Jinglei,LIANG Junhai,FU Zhichao,et al. Research on localization of construction personnel at infrastructure site based on TDOA algorithm[J]. Process Automation Instrumentation,2024,45(4):9-13.
    [21] 罗珊珊,何泽家. 基于粒子滤波泰勒算法的变电站人员定位跟踪系统[J]. 微型电脑应用,2024,40(3):102-107,111. doi: 10.3969/j.issn.1007-757X.2024.03.027

    LUO Shanshan,HE Zejia. Substation personnel llocation tracking system based on particle filter taylor algorithm[J]. Microcomputer Applications,2024,40(3):102-107,111. doi: 10.3969/j.issn.1007-757X.2024.03.027
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  28
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-24
  • 修回日期:  2024-09-25
  • 网络出版日期:  2024-08-22

目录

    /

    返回文章
    返回