Theory and method of shearer digital twin navigation cutting motion planning
-
摘要: 为进一步提高采煤工作面的智能化水平,实现采煤机导航截割的自主推演、自主学习和自主优化,基于采煤机自主导航截割技术和数字孪生智采工作面的概念,提出了采煤机数字孪生导航截割运动规划的理论与方法,包括数字孪生理论及基于该理论的采煤机数字孪生导航截割运动规划系统的构建方法。围绕数字孪生理论,探索了智采工作面的物理场景、数字孪生模型的构建及数字孪生驱动、交互和演化机制。为满足不同应用需求,将数字孪生模型分为物理实体、孪生模型和孪生数据模型,详细分析了这3类模型的特点。介绍了由模型驱动、数据驱动和服务驱动组成的3种运行机制,这3种机制通过虚实交互逻辑实现了从感知智能到认知智能的转变。构建了采煤机数字孪生导航截割运动规划系统,该系统通过物理感知层、综合数据层、数据融合分析层及数字孪生服务层,支撑采煤机截割状态数字孪生、动态导航地图数字孪生、数字孪生强化学习环境和强化学习运动规划的服务功能;通过数字化手段将现实中的采煤机导航截割过程复制到数字孪生操作环境中,通过系统内各模块的调用实现数据的自适应融合、智能分析和最优规划。最后,在构建的数字孪生环境中比较深度Q网络−归一化优势函数(DQN−NAF)算法与深度确定性策略梯度(DDPG)算法在采煤机运动规划任务中的效果,结果表明DQN−NAF算法在解决采煤机数字孪生运动规划任务时展现出更优的效果和稳定性。
-
关键词:
- 数字孪生智采工作面 /
- 采煤机自主导航截割 /
- 采煤机数字孪生导航截割 /
- 运动规划 /
- 动态导航地图
Abstract: In order to further improve the intelligence level of coal working faces and achieve autonomous deduction, autonomous learning, and autonomous optimization of shearer navigation cutting, based on the concept of shearer autonomous navigation cutting technology and digital twin smart mining face, the theory and method of shearer digital twin navigation cutting motion planning are proposed. It includes the theory of digital twin and the construction method of shearer digital twin navigation cutting motion planning system based on this theory. Based on the theory of digital twins, the paper explores the physical scenarios of smart mining working face, the construction of digital twin models, and the driving, interactive, and evolutionary mechanisms of digital twins. To meet different application needs, digital twin models are divided into physical entities, twin models, and twin data models. The features of these three types of models are analyzed in detail. Three operational mechanisms, including model driven, data-driven, and service driven, are introduced. The three operational mechanisms achieve the transition from perceptual intelligence to cognitive intelligence through virtual real interaction logic. The study develops a shearer digital twin navigation cutting motion planning system. The system supports the service functions of digital twin cutting status, dynamic navigation map, digital twin reinforcement learning environment, and reinforcement learning motion planning through physical perception layer, comprehensive data layer, data fusion analysis layer, and digital twin service layer. By digital means, the navigation and cutting process of the shearer in reality is replicated in the digital twin operating environment. The adaptive fusion, intelligent analysis, and optimal planning of data are achieved through the calling of various modules within the system. Finally, by comparing the performance of the deep q-network with normalized advantage functions(DQN-NAF) algorithm and the deep deterministic policy gradient (DDPG) algorithm in the motion planning task of shearers in the constructed digital twin environment, the results show that the DQN-NAF algorithm exhibits better performance and stability in solving the digital twin motion planning task of shearers. -
表 1 截割阻力扭矩添加代码示例
Table 1. Example of adding code to cutting resistance torque
public class ShearerScript : MonoBehaviour { public Rigidbody Shearer; public float forceX; // X轴力的大小 public float forceY; // Y轴力的大小 public float forceZ; // Z轴力的大小 public Vector3 torque; // 扭矩向量 void Start(){ Shearer= GetComponent<Rigidbody>(); } void ApplyTorque(){ Shearer.AddTorque(torque);} void FixedUpdate(){ Vector3 forceOnX = transform.right * forceX; Vector3 forceOnY = transform.up * forceY; Vector3 forceOnZ = transform.forward * forceZ; Shearer.AddForce(forceOnX + forceOnY+ forceOnZ); ApplyTorque();}} -
[1] 葛世荣. 智能化采煤装备的关键技术[J]. 煤炭科学技术,2014,42(9):7-11.GE Shirong. Key technology of intelligent coal mining equipment[J]. Coal Science and Technology,2014,42(9):7-11. [2] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46. [3] 葛世荣,王忠宾,王世博. 互联网+采煤机智能化关键技术研究[J]. 煤炭科学技术,2016,44(7):1-9.GE Shirong,WANG Zhongbin,WANG Shibo. Study on key technology of internet plus intelligent coal shearer[J]. Coal Science and Technology,2016,44(7):1-9. [4] 葛世荣,郝雪弟,田凯,等. 采煤机自主导航截割原理及关键技术[J]. 煤炭学报,2021,46(3):774-788.GE Shirong,HAO Xuedi,TIAN Kai,et al. Principle and key technology of autonomous navigation cutting for deep coal seam[J]. Journal of China Coal Society,2021,46(3):774-788. [5] 葛世荣,张帆,王世博,等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报,2020,45(6):1925-1936.GE Shirong,ZHNAG Fan,WANG Shibo,et al. Digital twin for smart coal mining workface:technological frame and construction[J]. Journal of China Coal Society,2020,45(6):1925-1936. [6] 葛世荣. 煤矿智采工作面概念及系统架构研究[J]. 工矿自动化,2020,46(4):1-9.GE Shirong. Research on concept and system architecture of smart mining workface in coal mine[J]. Industry and Mine Automation,2020,46(4):1-9. [7] 苗丙,葛世荣,郭一楠,等. 煤矿数字孪生智采工作面系统构建[J]. 矿业科学学报,2022,7(2):143-153.MIAO Bing,GE Shirong,GUO Yinan,et al. Construction of digital twin system for intelligent mining in coal mines[J]. Journal of Mining Science and Technology,2022,7(2):143-153. [8] 张帆,葛世荣,李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术,2020,48(7):168-176.ZHANG Fan,GE Shirong,LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology,2020,48(7):168-176. [9] 陶飞,张贺,戚庆林,等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统,2021,27(1):1-15.TAO Fei,ZHANG He,QI Qinglin,et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems,2021,27(1):1-15. [10] 陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1-18.TAO Fei,LIU Weiran,ZHANG Meng,et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems,2019,25(1):1-18. [11] 郭一楠,杨帆,葛世荣,等. 知识驱动的智采数字孪生主动管控模式[J]. 煤炭学报,2023,48(增刊1):334-344.GUO Yinan,YANG Fan,GE Shirong,et al. Novel knowledge-driven active management and control scheme of smart coal mining face with digital twin[J]. Journal of China Coal Society,2023,48(S1):334-344. [12] 张帆,葛世荣. 矿山数字孪生构建方法与演化机理[J]. 煤炭学报,2023,48(1):510-522.ZHANG Fan,GE Shirong. Construction method and evolution mechanism of mine digital twins[J]. Journal of China Coal Society,2023,48(1):510-522. [13] YI Yuanyuan,QIN Datong,LIU Changzhao. Investigation of electromechanical coupling vibration characteristics of an electric drive multistage gear system[J]. Mechanism and Machine Theory,2018,121:446-459. [14] LI Xuefeng,WANG Shibo,GE Shirong,et al. Investigation on the influence mechanism of rock brittleness on rock fragmentation and cutting performance by discrete element method[J]. Measurement,2018,113:120-130. [15] LI Xuefeng,WANG Shibo,GE Shirong,et al. A study on drum cutting properties with full-scale experiments and numerical simulations[J]. Measurement,2019,114:25-36. [16] MIAO Bing,LI Yunwang,GUO Yinan,et al. Design and experimental results of a three-dimensional force sensor for shearer cutting pick force monitoring[J]. Sensors,2023,23(23). DOI: 10.3390/S23239521. [17] MIAO Bing,LI Yunwang,GUO Yinan. Design of digital twin cutting experiment system for shearer[J]. Sensors,2024,24(10). DOI: 10.3390/S24103194. [18] GUAN Zenglun,WANG Shibo,WANG Jingqian,et al. Longwall face automation:coal seam floor cutting path planning based on multiple hierarchical clustering[J]. Applied Sciences,2023,13(18). DOI: 10.3390/APP131810242. [19] WAGN Shibo,WANG Shijia. Longwall mining automation horizon control:coal seam gradient identification using piecewise linear fitting[J]. International Journal of Mining Science and Technology,2022,32(4):821-829. [20] 张帆,邵光耀,李昱翰,等. 基于数字孪生和深度强化学习的矿井超前液压支架自适应抗冲支护方法[J]. 工矿自动化,2024,50(6):23-29,45.ZHANG Fan,SHAO Guangyao,LI Yuhan,et al. Adaptive impact resistance support method for advanced hydraulic supports in mines based on digital twins and deep reinforcement learning[J]. Journal of Mine Automation,2024,50(6):23-29,,45. [21] 张旭辉,刘彦徽,杨文娟,等. 数字孪生驱动的巷道自动成形截割虚拟调试方法研究[J]. 工矿自动化,2024,50(7):1-11,31.ZHANG Xuhui,LIU Yanhui,YANG Wenjuan,et al. Research on a digital twin driven virtual debugging method for roadway automatic forming cutting[J]. Journal of Mine Automation,2024,50(7):1-11,31.