Research on the characteristics of the falling behavior of mixed coal and gangue
-
摘要: 传统的基于图像检测技术的放顶煤过程中煤流动态特性研究多侧重于某一特定阶段的图像分析,未结合全阶段的动态特性进行综合分析;现有研究较少将放顶煤过程中上覆岩层的松散区变化与放煤过程中的煤矸分离和煤流特性相结合,缺乏对放煤过程的全局性系统分析。针对上述问题,对放顶煤过程中的煤流动态特性、煤矸分离效果及上覆岩层松散区凹陷变化进行了系统研究。首先,提出了一种基于双光流网络的放顶煤过程动态分析方法。实验结果表明:不同放煤方案下,放煤速度不随放煤形式和规律的变化而改变,平均检测准确率随着放煤口数量的增多而提高,尤其在不同放煤步距阶段呈明显线性增长;顶煤放出率与平均检测准确率呈正相关关系,验证了该方法在放顶煤过程监测中的有效性。其次,利用OpenCV技术对上覆岩层松散区凹陷面积进行实验分析。结果表明,初始放煤阶段松散区凹陷面积急剧增长,随后随时间推移逐渐趋于稳定;通过凹陷面积的动态变化趋势,可有效判断顶煤的放出过程,实现透明化放煤监测。最后,结合称重实验数据,分析了放煤量、放出率与含矸率之间的关系。结果表明,初始放煤阶段纯煤放出量最大,周期放煤阶段纯煤放出量趋于稳定,含矸率则随着放煤口数量的增多而减少。该结果进一步揭示了放煤方式对煤矸分离和顶煤放出率的影响。Abstract: Traditional studies on the dynamic characteristics of coal flow during the top coal caving process, based on image detection technology, have primarily focused on specific-stage image analysis, lacking a comprehensive analysis of dynamic characteristics across all stages. Existing research has rarely integrated the changes in the loose zone of the overlying strata with coal and gangue separation and coal flow characteristics during top coal caving, resulting in a lack of systematic and holistic analysis of the entire coal caving process. In response to these issues, this study systematically investigated coal flow dynamics, coal and gangue separation effectiveness, and the subsidence of the loose zone in the overlying strata during the top coal caving. First, this paper proposed a dynamic analysis method for the top coal caving process based on a dual optical flow network. The results indicated that the coal caving speed was not affected by the caving method and pattern, and that average detection accuracy increased with the number of caving openings, exhibiting a notably linear increase during the periodic caving stage. The release rate of top coal showed a positive correlation with average detection accuracy, validating the effectiveness of the method in the top coal caving process monitoring. Second, OpenCV technology was used to conduct experimental analysis on the subsidence area of the loose zone in the overlying strata. Results demonstrated that the subsidence area grew sharply during the initial caving stage and gradually stabilized over time. The dynamic changes in the subsidence area effectively indicated the progression of top coal release, enabling transparent monitoring of release process. Finally, based on data from weighing experiments, the relationships among caving amount, release rate, and gangue content were analyzed. Results showed that the amount of pure coal release was the highest in the initial caving stage and stabilized in the periodic caving stage, while gangue content decreased as the number of caving openings increased. These findings further reveal the influence of caving methods on coal and gangue separation and the release rate of top coal.
-
表 1 4种放煤方案结果统计
Table 1. Statistics of results for four coal discharge plans
放煤方案 统计类别 初始放煤阶段 不同放煤步距阶段 1 2 3 4 5 方案1(一组一放) 顶煤放出率/% 449.92 35.06 46.39 51.52 50.56 49.81 含矸率/% 0.63 6.86 5.01 4.84 5.55 5.37 监测时间/s 18.55 12.83 10.92 10.85 9.96 11.05 平均准确率/% 72.15 78.56 76.90 76.37 77.28 77.51 平均漏检率/% 8.17 12.79 11.43 10.68 11.89 11.65 平均监测速率/(帧·s−1) 28.55 28.34 27.69 28.05 26.96 27.49 方案2(二组一放) 顶煤放出率/% 325.75 31.77 49.45 50.09 48.17 含矸率/% 0.69 6.39 4.28 4.31 4.36 监测时间/s 16.19 10.03 9.75 9.42 9.78 平均准确率/% 78.02 79.95 79.73 80.06 80.19 平均漏检率/% 8.22 12.16 10.21 10.34 10.58 平均监测速率/(帧·s−1) 26.90 27.32 27.55 28.04 28.35 方案3(三组一放) 顶煤放出率/% 247.28 32.35 41.92 48.97 含矸率/% 0.74 5.65 4.22 3.72 监测时间/s 13.67 8.54 9.03 8.87 平均准确率/% 79.93 80.29 80.94 81.09 平均漏检率/% 8.35 12.06 10.15 9.88 平均监测速率/(帧·s−1) 28.35 28.17 26.52 28.30 方案4(五组一放) 顶煤放出率/% 203.76 37.15 49.32 含矸率/% 0.64 2.93 2.27 监测时间/s 8.23 5.59 5.72 平均准确率/% 81.26 81.68 82.56 平均漏检率/% 8.19 9.29 8.89 平均监测速率/(帧·s−1) 27.66 27.92 28.13 表 2 不同放煤方案在不同放煤步距下的煤矸放出量
Table 2. The amount of coal gangue released under different coal discharge methods and different coal discharge steps
放煤
方案统计类别 初始放
煤阶段不同放煤步距阶段 1 2 3 4 5 方案1
(一组
一放)纯煤质量/g 20 070 1 563 2 069.4 2 298.25 2 255.43 2 221.97 矸石质量/g 126.4 115.08 109.23 114.76 132.5 119.21 放出率/% 449.92 35.06 46.39 51.52 50.56 49.81 含矸率% 0.63 6.86 5.01 4.84 5.55 5.37 方案2
(二组
一放)纯煤质量/g 22 456 2 190.8 3 408.7 3 452.98 3 320.63 矸石质量/g 156.7 149.44 152.29 155.37 151.34 放出率/% 325.75 31.77 49.45 50.09 48.17 含矸率% 0.69 6.39 4.28 4.31 4.36 方案3
(三组
一放)纯煤质量/g 23 185 2 709.7 3 511.32 4 101.84 矸石质量/g 173.65 162.33 154.78 158.36 放出率/% 247.28 32.35 41.92 48.97 含矸率% 0.74 5.65 4.22 3.72 方案4
(五组
一放)纯煤质量/g 22 971.14 4 188.2 5 560.2 矸石质量/g 146.82 126.33 128.90 放出率/% 203.76 37.15 49.32 含矸率% 0.64 2.93 2.27 -
[1] 王家臣. 我国放顶煤开采的工程实践与理论进展[J]. 煤炭学报,2018,43(1):43-51.WANG Jiachen. Engineering practice and theoretical progress of top-coal caving mining technology in China[J]. Journal of China Coal Society,2018,43(1):43-51. [2] 庞义辉,关书方,姜志刚,等. 综放工作面围岩控制与智能化放煤技术现状及展望[J/OL]. 工矿自动化:1-8[2024-10-07]. https://doi.org/10.13272/j.issn.1671-251x.18211.PANG Yihui,GUAN Shufang,JIANG Zhigang,et al. Current situation and prospect of surrounding rock control and intelligent coal discharge technology in fully mechanized working face[J/OL]. Journal of Mine Automation:1-8[2024-10-07]. https://doi.org/10.13272/j.issn.1671-251x.18211. [3] 姜恩宏. 煤矿综合机械化放顶煤开采工艺的应用研究[J]. 内蒙古煤炭经济,2023(18):163-165. doi: 10.3969/j.issn.1008-0155.2023.18.055JIANG Enhong. Research on the application of comprehensive mechanised top coal mining technology in coal mines[J]. Inner Mongolia Coal Economy,2023(18):163-165. doi: 10.3969/j.issn.1008-0155.2023.18.055 [4] 庞成龙. 综采放顶煤工艺研究与应用[J]. 山西化工,2024,44(7):203-204,207.PANG Chenglong. Research and application of fully mechanised top coal caving technology[J]. Shanxi Chemical Industry,2024,44(7):203-204,207. [5] 周世宇. 潘津矿极近距离特厚煤层覆岩破坏与顶煤冒放规律研究[D]. 焦作:河南理工大学,2023.ZHOU Shiyu. Study on overburden failure and caving law of top coal in extremely short distance thick coal seam in Panjin Mine[D]. Jiaozuo:Henan Polytechnic University,2023. [6] 王爱国. 综放开采顶煤成拱机理及控制技术[J]. 煤矿安全,2014,45(8):214-216,220.WANG Aiguo. Top-coal arching mechanism and control technology in fully-mechanized caving mining[J]. Safety in Coal Mines,2014,45(8):214-216,220. [7] 王家臣,杨胜利,李良晖,等. 智能放煤理论与技术研究进展[J/OL]. 工矿自动化:1-14[2024-10-10]. https://doi.org/10.13272/j.issn.1671-251x.18213.WANG Jiachen,YANG Shengli,LI Lianghui,et al. Research progress on theory and technology of intelligent coal drawing[J/OL]. Journal of Mine Automation:1-14[2024-10-10]. https://doi.org/10.13272/j.issn.1671-251x.18213. [8] 韩立国. 综合放顶煤开采煤矸识别关键技术研究[D]. 阜新:辽宁工程技术大学,2023.HAN Liguo. Research on key technology of coal gangue identification in comprehensive caving coal mining[D]. Fuxin:Liaoning Technical University,2023. [9] 刘国方,宋选民,李昊城,等. 综放开采顶煤破碎放煤工艺参数优化研究[J]. 中国矿业,2021,30(12):90-97. doi: 10.12075/j.issn.1004-4051.2021.12.001LIU Guofang,SONG Xuanmin,LI Haocheng,et al. Research on optimization of top coal caving technology parameters in fully mechanized top coal caving[J]. China Mining Magazine,2021,30(12):90-97. doi: 10.12075/j.issn.1004-4051.2021.12.001 [10] 单海超,邓高鹏. 基于AI智能摄像监测的煤流系统异物识别控制技术研究与应用[J]. 河南科技,2021,40(22):16-18. doi: 10.3969/j.issn.1003-5168.2021.22.010SHAN Haichao,DENG Gaopeng. Research and application of foreign matter identification and control technology in coal flow system based on AI intelligent camera monitoring[J]. Journal of Henan Science and Technology,2021,40(22):16-18. doi: 10.3969/j.issn.1003-5168.2021.22.010 [11] 段雍. 基于图像的煤矸识别和定位方法研究与实现[D]. 西安:西安科技大学,2020.DUAN Yong. Research and realization identification and positioning method of coal and gangue based on image[D]. Xi'an:Xi'an University of Science and Technology,2020. [12] 凌铃. 基于深度学习的煤矸激光散斑图像识别方法研究[D]. 西安:西安理工大学,2024.LING Ling. Research on coal and gangue laser speckle image recognition method based on deep learning[D]. Xi'an:Xi'an University of Technology,2024. [13] 沈宁,窦东阳,杨程,等. 基于机器视觉的煤矸石多工况识别研究[J]. 煤炭工程,2019,51(1):120-125.SHEN Ning,DOU Dongyang,YANG Cheng,et al. Research on multi-condition identification of coal and gangue based on machine vision[J]. Coal Engineering,2019,51(1):120-125. [14] 张蕴韬,杨志全,李壮,等. 基于三维精细化建模有限差分计算的露天矿边坡稳定性研究[J]. 有色金属(矿山部分),2023,75(4):64-69. doi: 10.3969/j.issn.1671-4172.2023.04.010ZHANG Yuntao,YANG Zhiquan,LI Zhuang,et al. Evaluation of slope stability of open pit mine based on 3D refined modeling with finite difference calculation[J]. Nonferrous Metals(Mining Section),2023,75(4):64-69. doi: 10.3969/j.issn.1671-4172.2023.04.010 [15] 陈曦. 安太堡边帮开采区9504~9508工作面地表移动与地表水防治措施研究[D]. 北京:中国地质大学(北京),2019.CHEN Xi. Study on surface movement and surface water prevention and control measures for working faces of 9504-9508 in Antaibao Mining Area[D]. Beijing:China University of Geosciences Beijing,2019. [16] 王家臣,魏立科,张锦旺,等. 综放开采顶煤放出规律三维数值模拟[J]. 煤炭学报,2013,38(11):1905-1911.WANG Jiachen,WEI Like,ZHANG Jinwang,et al. 3-D numerical simulation on the top-coal movement law under caving mining technique[J]. Journal of China Coal Society,2013,38(11):1905-1911. [17] 乔明. 地表沉陷与上覆岩层移动规律数值研究[J]. 价值工程,2024,43(28):63-66.QIAO Ming. Numerical study of surface subsidence and overlying strata movement[J]. Value Engineering,2024,43(28):63-66. [18] 张建,亓佳利,李长青. 厚煤层开采上覆岩层移动与应力分布特征研究[J]. 山东煤炭科技,2024,42(6):139-143,154. doi: 10.3969/j.issn.1005-2801.2024.06.028ZHANG Jian,QI Jiali,LI Changqing. Research on movement and stress distribution characteristics of overlying strata in thick coal seam mining[J]. Shandong Coal Science and Technology,2024,42(6):139-143,154. doi: 10.3969/j.issn.1005-2801.2024.06.028 [19] 刘闯,李化敏,周英,等. 综放工作面多放煤口协同放煤方法[J]. 煤炭学报,2019,44(9):2632-2640.LIU Chuang,LI Huamin,ZHOU Ying,et al. Method of synergetic multi-windows caving in longwall top coal caving working face[J]. Journal of China Coal Society,2019,44(9):2632-2640. [20] 张锦旺,王家臣,魏炜杰,等. 块度级配对散体顶煤流动特性影响的试验研究[J]. 煤炭学报,2019,44(4):985-994.ZHANG Jinwang,WANG Jiachen,WEI Weijie,et al. Experimental investigation on the effect of size distribution on the flow characteristics of loose top coal[J]. Journal of China Coal Society,2019,44(4):985-994. [21] 张新战,张帅,崔峰. 急倾斜大段高综放开采煤矸混合流动规律研究[J]. 煤炭科学技术,2022,50(增刊2):16-25.ZHANG Xinzhan,ZHANG Shuai,CUI Feng. Similarity simulation study on mixed flow law of coal gangue in steep section and high fully mechanized caving mining[J]. Coal Science and Technology,2022,50(S2):16-25.