留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合简化可视图和A*算法的矿用车辆全局路径规划算法

张传伟 芦思颜 秦沛霖 周睿 赵瑞祺 杨佳佳 张天乐 赵聪

张传伟,芦思颜,秦沛霖,等. 融合简化可视图和A*算法的矿用车辆全局路径规划算法[J]. 工矿自动化,2024,50(10):12-20.  doi: 10.13272/j.issn.1671-251x.2024070048
引用本文: 张传伟,芦思颜,秦沛霖,等. 融合简化可视图和A*算法的矿用车辆全局路径规划算法[J]. 工矿自动化,2024,50(10):12-20.  doi: 10.13272/j.issn.1671-251x.2024070048
ZHANG Chuanwei, LU Siyan, QIN Peilin, et al. Global path planning algorithm for mining vehicles integrating simplified visibility graph and A* algorithm[J]. Journal of Mine Automation,2024,50(10):12-20.  doi: 10.13272/j.issn.1671-251x.2024070048
Citation: ZHANG Chuanwei, LU Siyan, QIN Peilin, et al. Global path planning algorithm for mining vehicles integrating simplified visibility graph and A* algorithm[J]. Journal of Mine Automation,2024,50(10):12-20.  doi: 10.13272/j.issn.1671-251x.2024070048

融合简化可视图和A*算法的矿用车辆全局路径规划算法

doi: 10.13272/j.issn.1671-251x.2024070048
基金项目: 陕西省创新人才推进计划项目(2021TD-27)。
详细信息
    作者简介:

    张传伟(1974—),男,安徽淮南人,教授,博士,研究方向为机电系统智能控制和矿用智能车辆,E-mail:zhangcw@xust.edu.cn

    通讯作者:

    芦思颜(2000—),女,陕西西安人,硕士研究生,研究方向为井下无人车路径规划,E-mail:1332267051@qq.com

  • 中图分类号: TD634

Global path planning algorithm for mining vehicles integrating simplified visibility graph and A* algorithm

  • 摘要: 针对矿用车辆在狭窄、弯曲及有未知障碍物的井下巷道中的路径规划效率低的问题,提出了一种融合简化可视图(SVG)和A*算法的全局路径规划算法DVGA*。在构建真实环境点云地图基础上,连接车辆在不同视点下的可视切点,动态生成SVG;将可视切点依次存入OPEN表作为节点,根据A*算法估价函数选取路径最短情况下的节点加入CLOSED表,得到最优路径点并存储路径,同时删除OPEN表中的其余节点,循环此过程,直到OPEN表中出现终点;最后利用路径平滑算法进一步减少路径节点数量,从而提高路径规划效率。实验结果表明,与完整可视图+A*算法、SVG+A*算法及SVGCA*算法对比,DVGA*算法对复杂长距离路径的规划时间最短,平均路径长度分别缩短了10.79 % ,6.26% 和2.86%,具有更强的适应性和更高的规划成功率。井下试验结果表明:在巷道宽度变换区域和躲避静态障碍物时,相比SVGCA*算法,DVGA*算法规划的路径更加平滑;躲避动态障碍物时,DVGA*算法能够及时进行路径纠正,保证了路径规划的时效性和稳定性;在复杂多变的巷道环境中,DVGA*算法的规划时间和路径长度相比SVGCA*算法分别减少了11.51%和1.54%,具有更高的环境适应性和稳定性。

     

  • 图  1  可视切线及可视切点

    Figure  1.  Visual tangents and visual tangent points

    图  2  动态切线可视化

    Figure  2.  Dynamic tangents visualization

    图  3  DVGA*算法原理

    Figure  3.  Principle of DVGA* algorithm

    图  4  路径平滑流程

    Figure  4.  Path smoothing process

    图  5  路径平滑前后对比

    Figure  5.  Comparison of path before and after smoothing

    图  6  模拟环境下4种算法规划路径对比

    Figure  6.  Comparison of path planning by four algorithms in a simulated environment

    图  7  智能小车

    Figure  7.  Intelligent car

    图  8  模拟巷道实验场景

    Figure  8.  Simulated roadway experiment scene

    图  9  点云地图构建及路径规划结果

    Figure  9.  Point cloud map construction and path planning results

    图  10  DVGA*算法规划路径局部放大

    Figure  10.  Local amplification of DVGA* algorithm planning path

    图  11  智能小车实验轨迹对比

    Figure  11.  Comparison of experimental trajectories of the intelligent car

    图  12  井下巷道环境

    Figure  12.  Underground roadway environment

    图  13  井下巷道路径规划试验结果

    Figure  13.  Experimental results of underground roadway path planning

    图  14  智能小车井下试验轨迹对比

    Figure  14.  Comparison of underground test trajectories of the intelligent car

     ${\mathrm{CLOSED}}\left\{ {} \right\} \leftarrow {O_{{\mathrm{start}}}}$
     ${\mathrm{OPEN}}\left\{ {} \right\} \leftarrow \left\{ {} \right\}$
     $ {\mathrm{if}}\text{ }I\in \left\{{A}_{1},{A}_{2},{B}_{1},{B}_{2}\right\} $//I为视点范围内可视点且不同时通过
     ${\mathrm{OPEN}}\left\{ {} \right\} \leftarrow I$
      ${\mathrm{While}}({\mathrm{True}}) $
     $ {A}_{2}\leftarrow f({\mathrm{OPEN}}) $//根据步骤3,评价最小值为可视扩展点
     ${\mathrm{CLOSED}}\left\{ {} \right\} \leftarrow {A_2}$
     $ {\mathrm{path}}\left\{\right\}\leftarrow [{O}_{{\mathrm{start}}},{A}_{2}]$//将边存储为路径
     $ {\mathrm{clear}}({\mathrm{OPEN}}\{{A}_{1},{B}_{1},{B}_{2}\}) $//清空OPEN表中其余点
     $I = {A_2}$
     …//重复执行步骤2),3),4)
     $ {\mathrm{if}}\text{ }\left\{{A}_{i} \cdots {B}_{i} \cdots \right\}\cap {O}_{{\mathrm{goal}}}={O}_{{\mathrm{goal}}} $//视点范围内出现了终点
     ${\mathrm{CLOSED}}\{ \} \leftarrow {O_{{\mathrm{goal}}}}$
     $ {\mathrm{path}}\left\{\right\}\leftarrow [I,{O}_{{\mathrm{goal}}}] $//将边存储为路径
     ${\mathrm{end}}$
    下载: 导出CSV

    表  1  模拟环境下4种算法的路径规划数据

    Table  1.   Path planning data for four algorithms in a simulated environments

    算法 可视
    边数
    算法执
    行时间/s
    可视图
    构建时间/s
    路径查
    找时间/s
    路径
    长度/m
    ${\mathrm{OPEN}}$
    表长度
    CVGA* 108 0.78 0.70 0.08 769.85 73
    SVG−A* 40 0.53 0.50 0.03 769.85 20
    SVGCA* 2 0.11 769.85 4
    DVGA* 32 0.10 0.09 0.01 769.85 3
    下载: 导出CSV

    表  2  实验硬件设备信息

    Table  2.   Experimental hardware equipment information

    设备名称 型号
    上位机 CPU i7−9700,RTX 3060,ROS Melodic
    激光雷达 velodyne VLP−16
    惯性测量单元 LPMS−IG1
    相机 D435i
    下载: 导出CSV

    表  3  不同算法实验数据对比

    Table  3.   Comparison of experimental data for different algorithms

    算法 平均规划时间/s 平均路径长度/m 成功次数
    CVGA* 296 75.107 20
    SVG−A* 243 71.454 23
    SVGCA* 218 68.981 26
    DVGA* 183 67.005 30
    下载: 导出CSV

    表  4  井下巷道路径规划试验数据对比

    Table  4.   Comparison of experimental data on underground roadway path planning

    算法平均规划时间/s平均路径长度/m成功次数
    SVGCA*27887.5118
    DVGA*24686.1649
    下载: 导出CSV
  • [1] 王虹桥,陈养才,王丹识. 我国“数字煤炭” 建设发展研究与探讨[J]. 中国煤炭,2024,50(1):9-14.

    WANG Hongqiao,CHEN Yangcai,WANG Danshi. Research and discussion on the development of "digital coal" construction in China[J]. China Coal,2024,50(1):9-14.
    [2] WANG Maosen,BAO Jiusheng,YUAN Xiaoming,et al. Research status and development trend of unmanned driving technology in coal mine transportation[J]. Energies,2022,15(23). DOI: 10.3390/en15239133.
    [3] 胡青松,孟春蕾,李世银,等. 矿井无人驾驶环境感知技术研究现状及展望[J]. 工矿自动化,2023,49(6):128-140.

    HU Qingsong,MENG Chunlei,LI Shiyin,et al. Research status and prospects of perception technology for unmanned mining vehicle driving environment[J]. Journal of Mine Automation,2023,49(6):128-140.
    [4] 鲍久圣,刘琴,葛世荣,等. 矿山运输装备智能化技术研究现状及发展趋势[J]. 智能矿山,2020,1(1):78-88.

    BAO Jiusheng,LIU Qin,GE Shirong,et al. Research status and development trend of intelligent technologies for mine transportation equipment[J]. Journal of Intelligent Mine,2020,1(1):78-88.
    [5] 蒲德全,高振刚,李鹏洲. 矿井无轨辅助运输车辆无人驾驶研究现状分析[J]. 现代矿业,2023,39(6):44-51. doi: 10.3969/j.issn.1674-6082.2023.06.012

    PU Dequan,GAO Zhengang,LI Pengzhou. Analysis of the research status of unmanned driving of mine trackless auxiliary transportation vehicles[J]. Modern Mining,2023,39(6):44-51. doi: 10.3969/j.issn.1674-6082.2023.06.012
    [6] 邓永胜. 煤矿井下无轨胶轮车的现状及应用[J]. 矿业装备,2023(2):165-167.

    DENG Yongsheng. Present situation and application of trackless rubber-tyred vehicle in coal mine[J]. Mining Equipment,2023(2):165-167.
    [7] 陈善有,郭洋,田斌,等. 国内外露天矿山无人驾驶研究现状分析与发展前景[J]. 现代矿业,2023,39(12):12-16. doi: 10.3969/j.issn.1674-6082.2023.12.002

    CHEN Shanyou,GUO Yang,TIAN Bin,et al. Analysis of current research status and development prospects of unmanned driving in open-pit mines at home and abroad[J]. Modern Mining,2023,39(12):12-16. doi: 10.3969/j.issn.1674-6082.2023.12.002
    [8] 吕太之,赵春霞,夏平平. 基于同步可视图构造和A*算法的全局路径规划[J]. 南京理工大学学报,2017,41(3):313-321.

    LYU Taizhi,ZHAO Chunxia,XIA Pingping. Global path planning based on simultaneous visibility graph construction and A* algorithm[J]. Journal of Nanjing University of Science and Technology,2017,41(3):313-321.
    [9] 崔宝侠,王淼弛,段勇. 基于可搜索24邻域的A*算法路径规划[J]. 沈阳工业大学学报,2018,40(2):180-184. doi: 10.7688/j.issn.1000-1646.2018.02.11

    CUI Baoxia,WANG Miaochi,DUAN Yong. Path planning for A* algorithm based on searching 24 neighborhoods[J]. Journal of Shenyang University of Technology,2018,40(2):180-184. doi: 10.7688/j.issn.1000-1646.2018.02.11
    [10] 程传奇,郝向阳,李建胜,等. 融合改进A*算法和动态窗口法的全局动态路径规划[J]. 西安交通大学学报,2017,51(11):137-143.

    CHENG Chuanqi,HAO Xiangyang,LI Jiansheng,et al. Global dynamic path planning based on fusion of improved A* algorithm and dynamic window approach[J]. Journal of Xi'an Jiaotong University,2017,51(11):137-143.
    [11] RICHTER C,ROY N. Learning to plan for visibility in navigation of unknown environments[C]. International Symposium on Experimental Robotics,Tokyo,2016:387-398.
    [12] OLEYNIKOVA H,TAYLOR Z,SIEGWART R,et al. Safe local exploration for replanning in cluttered unknown environments for microaerial vehicles[J]. IEEE Robotics and Automation Letters,2018,3(3):1474-1481. doi: 10.1109/LRA.2018.2800109
    [13] 黄迎港,陈锴,罗文广. 复杂环境下无人机全覆盖路径规划混合算法研究[J]. 广西科技大学学报,2022,33(1):85-93.

    HUANG Yinggang,CHEN Kai,LUO Wenguang. Hybrid algorithm of UAV full coverage path planning in complex environment[J]. Journal of Guangxi University of Science and Technology,2022,33(1):85-93.
    [14] 袁晓明,郝明锐. 煤矿辅助运输机器人关键技术研究[J]. 工矿自动化,2020,46(8):8-14.

    YUAN Xiaoming,HAO Mingrui. Research on key technologies of coal mine auxiliary transportation robot[J]. Industry and Mine Automation,2020,46(8):8-14.
    [15] 黄友锐,李静,韩涛,等. 基于膜计算的煤矿井下机器人路径规划算法[J]. 工矿自动化,2021,47(11):22-29.

    HUANG Yourui,LI Jing,HAN Tao,et al. Research on path planning algorithm of robot in coal mine based on membrane computing[J]. Industry and Mine Automation,2021,47(11):22-29.
    [16] 薛光辉,王梓杰,王一凡,等. 基于改进人工势场算法的煤矿井下机器人路径规划[J]. 工矿自动化,2024,50(5):6-13.

    XUE Guanghui,WANG Zijie,WANG Yifan,et al. Path planning of coal mine underground robot based on improved artificial potential field algorithm[J]. Journal of Mine Automation,2024,50(5):6-13.
    [17] 夏静慧,肖战定,霍亚超,等. 一种改进人工势场的矿车避障路径规划方法[J]. 能源与环保,2024,46(5):196-201.

    XIA Jinghui,XIAO Zhanding,HUO Yachao,et al. An obstacle avoidance path planning method for mine cars with improved artificial potential field[J]. China Energy and Environmental Protection,2024,46(5):196-201.
    [18] 黄荣杰,王亚刚. 基于可视图与改进遗传算法的机器人平滑路径规划[J]. 控制工程,2024,31(4):678-686.

    HUANG Rongjie,WANG Yagang. Smooth path planning for robot based on visibility graph and improved genetic algorithm[J]. Control Engineering of China,2024,31(4):678-686.
    [19] 范晓临,张旭东,邹渊,等. 一种基于简化可视图的建图和规划方法[J]. 汽车工程,2024,46(7):1249-1258.

    FAN Xiaolin,ZHANG Xudong,ZOU Yuan,et al. A mapping and planning method based on simplified visibility graph[J]. Automotive Engineering,2024,46(7):1249-1258.
    [20] BOTEA A,MÜLLER M,SCHAEFFER J. Near optimal hierarchical path-finding[J]. Journal of Game Development,2004,1:1-30.
    [21] 张琦,马家辰,马立勇. 基于简化可视图的环境建模方法[J]. 东北大学学报(自然科学版),2013,34(10):1383-1386,1391.

    ZHANG Qi,MA Jiachen,MA Liyong. Environment modeling approach based on simplified visibility graph[J]. Journal of Northeastern University (Natural Science),2013,34(10):1383-1386,1391.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  19
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-12
  • 修回日期:  2024-10-23
  • 网络出版日期:  2024-09-03

目录

    /

    返回文章
    返回