留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进YOLOv8n+DeepSORT的带式输送机异物检测及计数方法

陈腾杰 李永安 张之好 林斌

陈腾杰,李永安,张之好,等. 基于改进YOLOv8n+DeepSORT的带式输送机异物检测及计数方法[J]. 工矿自动化,2024,50(8):91-98.  doi: 10.13272/j.issn.1671-251x.2024070043
引用本文: 陈腾杰,李永安,张之好,等. 基于改进YOLOv8n+DeepSORT的带式输送机异物检测及计数方法[J]. 工矿自动化,2024,50(8):91-98.  doi: 10.13272/j.issn.1671-251x.2024070043
CHEN Tengjie, LI Yong'an, ZHANG Zhihao, et al. Foreign object detection and counting method for belt conveyor based on improved YOLOv8n+DeepSORT[J]. Journal of Mine Automation,2024,50(8):91-98.  doi: 10.13272/j.issn.1671-251x.2024070043
Citation: CHEN Tengjie, LI Yong'an, ZHANG Zhihao, et al. Foreign object detection and counting method for belt conveyor based on improved YOLOv8n+DeepSORT[J]. Journal of Mine Automation,2024,50(8):91-98.  doi: 10.13272/j.issn.1671-251x.2024070043

基于改进YOLOv8n+DeepSORT的带式输送机异物检测及计数方法

doi: 10.13272/j.issn.1671-251x.2024070043
基金项目: 山西省重点研发计划项目(202102100401017)。
详细信息
    作者简介:

    陈腾杰(1998—),男,山西临汾人,硕士研究生,主要研究方向为矿用巡检机器人技术,E-mail:2460483626@qq.com

    通讯作者:

    李永安(1984—),男,陕西杨凌人,副研究员,博士研究生,主要研究方向为矿用装备电液控制技术与机器人化,E-mail:lya1984610@126.com

  • 中图分类号: TD528.1

Foreign object detection and counting method for belt conveyor based on improved YOLOv8n+DeepSORT

  • 摘要: 现有带式输送机异物检测方法存在提取目标语义信息能力弱、检测精度差等问题,且仅对异物进行识别检测,不能准确计算异物数量。针对该问题,设计了一种基于改进YOLOv8n+DeepSORT的带式输送机异物检测及计数方法。对YOLOv8n模型进行改进,再使用改进YOLOv8n(MSF−YOLOv8n)模型对带式输送机异物进行识别;将MSF−YOLOv8n模型的异物检测结果作为DeepSORT算法的输入,实现带式输送机异物跟踪和计数。YOLOv8n改进方法:使用C2f_MLCA模块替换主干网络中的C2f模块,提高网络在颜色信息单一环境下的信息提取能力;使用分离和增强注意力模块(SEAM)改进Head部分,以提高异物被遮挡情况下的检测精度;采用Focaler−IoU优化损失函数,解决检测目标形状差异大的问题。MSF−YOLOv8n模型性能验证实验结果表明,MSF−YOLOv8n模型的mAP50达93.2%,相较于基础模型提高了2.1%;参数量仅为2.82×106,比基础模型少了0.19×106,更适合部署到巡检机器人等边缘设备中;检测精度比YOLOv5s,YOLOv7,YOLOv8s算法分别高2.2%,1.3%,0.3%;其帧率虽然比YOLOv8s和YOLOv8n低,但仍可满足视频实时性检测要求。异物检测及计数实验结果表明,DeepSORT算法的准确率达80%,可准确跟踪被遮挡的锚杆及形状差异较大的目标。

     

  • 图  1  MSF−YOLOv8n模型结构

    Figure  1.  MSF-YOLOv8n model structure

    图  2  C2f_MLCA模块结构

    Figure  2.  C2f_MLCA module structure

    图  3  SEAM结构

    Figure  3.  Separated and enhancement attention module structure

    图  4  基于MSF−YOLOv8n+DeepSORT的带式输送机异物检测及计数流程

    Figure  4.  Foreign object detection and counting process for belt conveyor based on MSF-YOLOv8n+DeepSORT

    图  5  部分增强后的图像

    Figure  5.  Partially enhanced images

    图  6  Grad−CAM热力图

    Figure  6.  Grad-CAM thermal map

    图  7  主流模型检测精度对比

    Figure  7.  Comparison of detection precision of mainstream models

    图  8  主流模型在测试集上的检测效果

    Figure  8.  The detection effect of mainstream models on the test set

    图  9  不同工况下的异物检测结果

    Figure  9.  Foreign object detection results under different working conditions

    图  10  各种算法的异物计数效果

    Figure  10.  Foreign object counting effect of various algorithms

    表  1  MSF−YOLOv8n训练参数设置

    Table  1.   MSF-YOLOv8n training parameter setting

    参数 数值 参数 数值
    epochs 300 lr 0.01
    batch 8 optimizer SGD
    imgsz 640 weight_decay 0.0005
    workers 8 momentum 0.937
    下载: 导出CSV

    表  2  消融实验结果

    Table  2.   Ablation experiment results

    基础
    网络
    C2f_
    MLCA
    Detect_
    SEAM
    Focaler−CIoU mAP50/% 参数
    量/106
    帧率/
    (帧·s−1
    × × × 91.1 3.01 115
    × × 91.9 3.01 105
    × × 92.7 2.82 93
    × × 89.1 3.01 117
    × 92.9 2.82 97
    93.2 2.82 101
    下载: 导出CSV

    表  3  不同模型性能对比结果

    Table  3.   Comparison results of performance of different models

    模型 mAP50/% 参数量/106 帧率/(帧·s−1
    YOLOv5s 91.0 9.12 91
    YOLOv7 91.9 36.90 69.5
    YOLOv8s 92.9 11.12 115
    YOLOv8n 91.1 3.01 111
    MSF−YOLOv8n 93.2 2.82 101
    下载: 导出CSV

    表  4  带式输送机异物计数结果

    Table  4.   Foreign object counting results of belt conveyor

    算法 人工计数结果 模型计数结果 差值 准确率/%
    BYTETracker 10 17 7 30
    HybridSORT 10 14 4 60
    BoT−SORT 10 15 5 50
    DeepSORT 10 12 2 80
    下载: 导出CSV
  • [1] 王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践——纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1-18.

    WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years:commemorate the 50th anniversary of the publication of Coal Science and Technology[J]. Coal Science and Technology,2023,51(1):1-18.
    [2] 邓军,李鑫,王凯,等. 矿井火灾智能监测预警技术近20年研究进展及展望[J]. 煤炭科学技术,2024,41(1):154-177.

    DENG Jun,LI Xin,WANG Kai,et al. Research progress and prospect of mine fire intelligent monitoring and early warning technology in recent 20 years[J]. Coal Science and Technology,2024,41(1):154-177.
    [3] 葛世荣,胡而已,李允旺. 煤矿机器人技术新进展及新方向[J]. 煤炭学报,2023,48(1):54-73.

    GE Shirong,HU Eryi,LI Yunwang. New progress and direction of robot technology in coal mine[J]. Journal of China Coal Society,2023,48(1):54-73.
    [4] 程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
    [5] 吴守鹏,丁恩杰,俞啸. 基于改进FPN的输送带异物识别方法[J]. 煤矿安全,2019,50(12):127-130.

    WU Shoupeng,DING Enjie,YU Xiao. Foreign body identification of belt based on improved FPN[J]. Safety in Coal Mines,2019,50(12):127-130.
    [6] 郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156.

    HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
    [7] 高涵,赵培培,于正,等. 基于特征增强与Transformer的煤矿输送带异物检测[J]. 煤炭科学技术,2024,52(7):199-208.

    GAO Han,ZHAO Peipei,YU Zheng,et al. Coal mine conveyor belt foreign object detection based on feature enhancement and Transformer[J]. Coal Science and Technology,2024,52(7):199-208.
    [8] 蔡腾,陈慈发,董方敏. 结合Transformer和动态特征融合的低照度目标检测[J]. 计算机工程与应用,2024,60(9):135-141.

    CAI Teng,CHEN Cifa,DONG Fangmin. Low-light object detection combining transformer and dynamic feature fusion[J]. Computer Engineering and Applications,2024,60(9):135-141.
    [9] 杨豚,郭永存,王爽,等. 煤矿井下无人驾驶轨道电机车障碍物识别[J]. 浙江大学学报(工学版),2024,58(1):29-39.

    YANG Tun,GUO Yongcun,WANG Shuang,et al. Obstacle recognition of unmanned rail electric locomotive in underground coal mine[J]. Journal of Zhejiang University (Engineering Science),2024,58(1):29-39.
    [10] 王满利,杨爽,张长森. 基于改进YOLOv8n的立井刚性罐道接头错位检测算法[J/OL]. 煤炭科学技术:1-13[2024-06-23]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231207.0926.002.html.

    WANG Manli,YANG Shuang,ZHANG Changsen. An improved YOLOv8n based detection algorithm for misalignment of vertical shaft rigid tank channel joints[J/OL]. Coal Science and Technology:1-13[2024-06-23]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231207.0926.002.html.
    [11] 徐慈强,贾运红,田原. 基于MES−YOLOv5s的综采工作面大块煤检测算法[J]. 工矿自动化,2024,50(3):42-47,141.

    XU Ciqiang,JIA Yunhong,TIAN Yuan. Large block coal detection algorithm for fully mechanized working face based on MES-YOLOv5s[J]. Journal of Mine Automation,2024,50(3):42-47,141.
    [12] 陈伟,江志成,田子建,等. 基于YOLOv8的煤矿井下人员不安全动作检测算法[J/OL]. 煤炭科学技术:1-19[2024-06-23]. http://kns.cnki.net/kcms/detail/11.2402.td.20240322.1343.003.html.

    CHEN Wei,JIANG Zhicheng,TIAN Zijian,et al. Unsafe movement detection algorithm for coal mine underground personnel based on YOLOv8[J/OL]. Coal Science and Technology:1-19[2024-06-23]. http://kns.cnki.net/kcms/detail/11.2402.td.20240322.1343.003.html.
    [13] WAN Dahang,LU Rongsheng,SHEN Siyuan,et al. Mixed local channel attention for object detection[J]. Engineering Applications of Artificial Intelligence,2023,123. DOI:10.1016/j.engappai. 2023.106442.
    [14] 洪炎,汪磊,苏静明,等. 基于改进YOLOv8的煤矿输送带异物检测[J]. 工矿自动化,2024,50(6):61-69.

    HONG Yan,WANG Lei,SU Jingming,et al. Foreign object detection of coal mine conveyor belt based on improved YOLOv8[J]. Journal of Mine Automation,2024,50(6):61-69.
    [15] YU Ziping,HUANG Hongbo,CHEN Weijun,et al. YOLO-FaceV2:a scale and occlusion aware face detector[J]. Pattern Recognition,2024,155. DOI: 10.1016/j.patcog.2024.110714.
    [16] 张新月,胡广锐,李浦航,等. 基于改进YOLOv8n的轻量化红花识别方法[J]. 农业工程学报,2024,40(13):163-170.

    ZHANG Xinyue,HU Guangrui,LI Puhang,et al. Recognizing safflower using improved lightweight YOLOv8n[J]. Transactions of the Chinese Society of Agricultural Engineering,2024,40(13):163-170.
    [17] ZHANG Hao,ZHANG Shuaijie. Focaler-IoU:more focused intersection over union loss[EB/OL]. [2024-06-23]. https://arxiv.org/html/2401.10525v1.
    [18] 贾豆豆. 基于YOLOv5+DeepSort的小目标跟踪方法研究[D]. 太原:中北大学,2022.

    JIA Doudou. Research on small target tracking method based on YOLOv5+DeepSort[D]. Taiyuan:North University of China,2022.
    [19] 赵梓杉,桑海峰. 基于改进的YOLOv5的交通锥标检测系统[J]. 电子测量与仪器学报,2023,37(2):56-64.

    ZHAO Zishan,SANG Haifeng. Traffic cone detection system based on improved YOLOv5[J]. Journal of Electronic Measurement and Instrumentation,2023,37(2):56-64.
    [20] 程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369.

    CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369.
    [21] 王宏伟,李进,闫志蕊,等. 基于图像与点云融合的巷道锚护孔位识别定位方法[J]. 煤炭科学技术,2024,52(5):249-261.

    WANG Hongwei,LI Jin,YAN Zhirui,et al. Roadway anchor hole recognition and positioning method based on image and point cloud fusion[J]. Coal Science and Technology,2024,52(5):249-261.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  31
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-11
  • 修回日期:  2024-08-22
  • 网络出版日期:  2024-08-12

目录

    /

    返回文章
    返回