留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自监督学习的IRS辅助矿井通信系统信道估计方法

王安义 李新宇 李明珠 李婼嫚

王安义,李新宇,李明珠,等. 基于自监督学习的IRS辅助矿井通信系统信道估计方法[J]. 工矿自动化,2024,50(8):144-150.  doi: 10.13272/j.issn.1671-251x.2024070038
引用本文: 王安义,李新宇,李明珠,等. 基于自监督学习的IRS辅助矿井通信系统信道估计方法[J]. 工矿自动化,2024,50(8):144-150.  doi: 10.13272/j.issn.1671-251x.2024070038
WANG Anyi, LI Xinyu, LI Mingzhu, et al. Channel estimation method for IRS assisted mine communication system based on self supervised learning[J]. Journal of Mine Automation,2024,50(8):144-150.  doi: 10.13272/j.issn.1671-251x.2024070038
Citation: WANG Anyi, LI Xinyu, LI Mingzhu, et al. Channel estimation method for IRS assisted mine communication system based on self supervised learning[J]. Journal of Mine Automation,2024,50(8):144-150.  doi: 10.13272/j.issn.1671-251x.2024070038

基于自监督学习的IRS辅助矿井通信系统信道估计方法

doi: 10.13272/j.issn.1671-251x.2024070038
基金项目: 国家自然科学基金项目(62271386)。
详细信息
    作者简介:

    王安义(1968—),男,山东潍坊人,教授,博士,主要研究方向为矿山无线通信及信息化技术,E-mail:wanganyi@xust.edu.cn

    通讯作者:

    李新宇(2000—),男,甘肃天水人,硕士,主要研究方向为矿山无线通信及信息化技术,E-mail:1837664483@qq.com

  • 中图分类号: TD655

Channel estimation method for IRS assisted mine communication system based on self supervised learning

  • 摘要: 针对矿井复杂环境导致的多径衰落、非视距通信及真实标签获取困难的问题,提出一种基于自监督学习(SSL)的智能反射面(IRS)辅助矿井通信系统信道估计方法。根据井下Nakagami-g衰落信道模型和IRS信号传输模型搭建井下通信系统模型,通过IRS技术解决多径衰落和非视距通信问题。通过最小二乘(LS)算法进行初步信道估计,再采用SSL框架下的八度卷积(OCT)神经网络优化信道估计结果。OCT直接对高频分量和低频分量进行处理,能同时捕捉信道的粗糙特征和细微差别,提供全面的信道信息,从而更准确地估计信道状态;SSL算法使用接收信号及其带噪版本作为训练数据,通过未标注数据的内在结构提升IRS辅助信道估计的精度和效率,从而降低对人工标签的依赖。仿真结果表明:① 引入IRS技术能有效降低信道估计误差。② OCT神经网络的损失值明显低于CNN,数据拟合效果更好;OCT神经网络计算效率高,可提高通信系统信道估计的整体性能;在计算资源有限的环境下,OCT神经网络可保持较低参数量和内存使用量。③ SSL算法在所有信噪比条件下均能保持较低的归一化均方误差,验证了其在信道估计中的高效性和鲁棒性。④ 基于SSL的IRS辅助矿井通信系统信道估计方法在大规模网络中具有较好的扩展性和鲁棒性。

     

  • 图  1  基于SSL的IRS辅助矿井通信系统信道估计方法整体框架

    Figure  1.  Overall framework of channel estimation method for intelligence reflecting surface(IRS) assisted mine communication system based on self-supervised learning(SSL)

    图  2  IRS信号传输模型

    Figure  2.  Signal transmission model of IRS

    图  3  OCT神经网络结构

    Figure  3.  Octave convolution(OCT) neural network structure

    图  4  SSL流程

    Figure  4.  Self-supervised learning(SSL) flow

    图  5  引入IRS技术前后算法性能对比

    Figure  5.  Comparison of algorithm performance before and after introducing IRS technology

    图  6  2种算法训练结果对比

    Figure  6.  Comparison of training results of two algorithms

    图  7  不同算法的NMSE对比

    Figure  7.  Comparison of normalized mean square error(NMSE) of different algorithms

    表  1  OCT神经网络参数

    Table  1.   Parameters of OCT neural network

    层类型 输出通道数 卷积核大小
    Initial_Conv 128 (3,3)
    OctConv 32 (3,3)
    BN 64
    残差模块(Conv) 64 (3,3)
    下载: 导出CSV

    表  2  不同算法的运行时间

    Table  2.   The running time of different algorithms

    算法 训练时间/s 测试时间/s
    深度学习 CNN 119.04 $ 1.240 \times {10^{ - 3}} $
    OCT 84.86 $ 8.660 \times {10^{ - 4}} $
    传统算法 LS 1.200
    LMMSE 0.722
    下载: 导出CSV

    表  3  不同模型性能对比

    Table  3.   Performance comparison of different models

    网络模型参数量/个内存使用量/GiB
    当前峰值
    CNN230 27210.111.6
    OCT226 8165.46.2
    ResNet369 2808.39.0
    DenseNet821 7607.38.1
    下载: 导出CSV

    表  4  不同规模网络中的NMSE与内存使用情况

    Table  4.   NMSE and memory usage in networks of different scales

    网络规模NMSE内存使用量/GiB
    0.1145.4
    0.2558.5
    0.38114.6
    下载: 导出CSV
  • [1] 霍振龙,肖松,孟玮,等. 矿井5G无线通信系统关键技术及装备研发与示范应用[J]. 智能矿山,2022,3(4):55-60.

    HUO Zhenlong,XIAO Song,MENG Wei,et al. Research,development and demonstration application of key technologies and equipment of mine 5G wireless communication system[J]. Journal of Intelligent Mine,2022,3(4):55-60.
    [2] 孙翠珍,毛昕蓉,马延军. 井下OFDM信道估计算法研究[J]. 工矿自动化,2014,40(9):39-43.

    SUN Cuizhen,MAO Xinrong,MA Yanjun. Research of underground OFDM channel estimation algorithm[J]. Industry and Mine Automation,2014,40(9):39-43.
    [3] 樊佳恒. 基于压缩感知的煤矿井下信道估计技术研究[D]. 徐州:中国矿业大学,2020.

    FAN Jiaheng. Research on channel estimation technology in coal mine based on compressive sensing[D]. Xuzhou:China University of Mining and Technology,2020.
    [4] BASAR E,DI RENZO M,DE ROSNY J,et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access,2019,7:116753-116773. doi: 10.1109/ACCESS.2019.2935192
    [5] NADEEM Q U A,ALWAZANI H,KAMMOUN A,et al. Intelligent reflecting surface-assisted multi-user MISO communication:channel estimation and beamforming design[J]. IEEE Open Journal of the Communications Society,2020,1:661-680. doi: 10.1109/OJCOMS.2020.2992791
    [6] HUANG Chongwen,ZAPPONE A,ALEXANDROPOULOS G C,et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications,2019,18(8):4157-4170. doi: 10.1109/TWC.2019.2922609
    [7] ARDAH K,GHEREKHLOO S,DE ALMEIDA A L F,et al. TRICE:a channel estimation framework for RIS-aided millimeter-wave MIMO systems[J]. IEEE Signal Processing Letters,2021,28:513-517. doi: 10.1109/LSP.2021.3059363
    [8] KISSELEFF S,CHATZINOTAS S,OTTERSTEN B. Reconfigurable intelligent surfaces in challenging environments:underwater,underground,industrial and disaster[J]. IEEE Access,2021,9:150214-150233. doi: 10.1109/ACCESS.2021.3125461
    [9] CHEN Jie,LIANG Yingchang,CHENG H V,et al. Channel estimation for reconfigurable intelligent surface aided multi-user mmWave MIMO systems[J]. IEEE Transactions on Wireless Communications,2023,22(10):6853-6869. doi: 10.1109/TWC.2023.3246264
    [10] XIE Wenwu,XIAO Jian,ZHU Peng,et al. Deep compressed sensing-based cascaded channel estimation for RIS-aided communication systems[J]. IEEE Wireless Communications Letters,2022,11(4):846-850. doi: 10.1109/LWC.2022.3147590
    [11] CHEN J C. Machine learning-inspired algorithmic framework for intelligent reflecting surface-assisted wireless systems[J]. IEEE Transactions on Vehicular Technology,2021,70(10):10671-10685. doi: 10.1109/TVT.2021.3110970
    [12] ZHOU Gui,PAN Cunhua,REN Hong,et al. Channel estimation for RIS-aided multiuser millimeter-wave systems[J]. IEEE Transactions on Signal Processing,2022,70:1478-1492. doi: 10.1109/TSP.2022.3158024
    [13] JENSEN T L,DE CARVALHO E. An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator[C]. IEEE International Conference on Acoustics,Speech and Signal Processing,Barcelona,2020:5000-5004.
    [14] WANG Tianqi,WEN Chaokai,WANG Hanqing,et al. Deep learning for wireless physical layer:opportunities and challenges[J]. China Communications,2017,14(11):92-111. doi: 10.1109/CC.2017.8233654
    [15] ELBIR A M,PAPAZAFEIROPOULOS A,KOURTESSIS P,et al. Deep channel learning for large intelligent surfaces aided mm-wave massive MIMO systems[J]. IEEE Wireless Communications Letters,2020,9(9):1447-1451. doi: 10.1109/LWC.2020.2993699
    [16] GAO Shen,DONG Peihao,PAN Zhiwen,et al. Deep multi-stage CSI acquisition for reconfigurable intelligent surface aided MIMO systems[J]. IEEE Communications Letters,2021,25(6):2024-2028. doi: 10.1109/LCOMM.2021.3063464
    [17] LIU Shicong,GAO Zhen,ZHANG Jun,et al. Deep denoising neural network assisted compressive channel estimation for mmWave intelligent reflecting surfaces[J]. IEEE Transactions on Vehicular Technology,2020,69(8):9223-9228. doi: 10.1109/TVT.2020.3005402
    [18] KUNDU N K,MCKAY M R. A deep learning-based channel estimation approach for MISO communications with large intelligent surfaces[C]. IEEE 31st Annual International Symposium on Personal,Indoor and Mobile Radio Communications,London,2020:1-6.
    [19] LIU Chang,LIU Xuemeng,NG D W K,et al. Deep residual learning for channel estimation in intelligent reflecting surface-assisted multi-user communications[J]. IEEE Transactions on Wireless Communications,2022,21(2):898-912. doi: 10.1109/TWC.2021.3100148
    [20] 李涛,蒋磊,陈博文. 独立不同分布Nakagami-m衰落信道下最大比合并性能分析[J]. 空军工程大学学报(自然科学版),2018,19(6):84-89.

    LI Tao,JIANG Lei,CHEN Bowen. A performance analysis of maximal ratio combining under condition of non-identically distributed nakagami-mFading channels[J]. Journal of Air Force Engineering University (Natural Science Edition),2018,19(6):84-89.
    [21] 张长森,张艳芳. 矿井移动通信中Nakagami衰落信道模型的研究[J]. 计算机工程与应用,2014,50(7):238-241. doi: 10.3778/j.issn.1002-8331.1207-0345

    ZHANG Changsen,ZHANG Yanfang. Research of Nakagami fading channel model in mine mobile communication[J]. Computer Engineering and Applications,2014,50(7):238-241. doi: 10.3778/j.issn.1002-8331.1207-0345
    [22] CHEN Yunpeng,FAN Haoqi,XU Bing,et al. Drop an octave:reducing spatial redundancy in convolutional neural networks with octave convolution[C]. 2019 IEEE/CVF International Conference on Computer Vision,Seoul,2019:3435-3444.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  25
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-10
  • 修回日期:  2024-08-26
  • 网络出版日期:  2024-08-22

目录

    /

    返回文章
    返回