留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于增强网格网络的井下尘雾图像清晰化算法

谷亚楠 李晴 刘晨晨 张富凯

谷亚楠,李晴,刘晨晨,等. 基于增强网格网络的井下尘雾图像清晰化算法[J]. 工矿自动化,2024,50(10):120-127, 159.  doi: 10.13272/j.issn.1671-251x.2024070036
引用本文: 谷亚楠,李晴,刘晨晨,等. 基于增强网格网络的井下尘雾图像清晰化算法[J]. 工矿自动化,2024,50(10):120-127, 159.  doi: 10.13272/j.issn.1671-251x.2024070036
GU Yanan, LI Qing, LIU Chenchen, et al. Image clarification algorithm for underground dust and mist based on enhanced grid network[J]. Journal of Mine Automation,2024,50(10):120-127, 159.  doi: 10.13272/j.issn.1671-251x.2024070036
Citation: GU Yanan, LI Qing, LIU Chenchen, et al. Image clarification algorithm for underground dust and mist based on enhanced grid network[J]. Journal of Mine Automation,2024,50(10):120-127, 159.  doi: 10.13272/j.issn.1671-251x.2024070036

基于增强网格网络的井下尘雾图像清晰化算法

doi: 10.13272/j.issn.1671-251x.2024070036
基金项目: 国家自然科学基金项目(52174174);河南省高等学校重点科研项目(23B520002);河南理工大学基本科研业务费专项项目(自然科学类)(NSFRF230429)。
详细信息
    作者简介:

    谷亚楠 (1987—),女,河南焦作人,讲师,博士,硕士研究生导师, 主要从事优化算法、机器视觉等方面的研究工作,E-mail:guyanan2020@hpu.edu.cn

    通讯作者:

    张富凯 (1986—),男,河南焦作人,副教授,博士,硕士研究生导师,研究方向为计算机视觉识别,E-mail:zhangfukai@hpu.edu.cn

  • 中图分类号: TD67

Image clarification algorithm for underground dust and mist based on enhanced grid network

  • 摘要: 针对目前井下尘雾图像清晰化算法存在的图像偏暗、细节丢失和过度增强等问题,提出一种基于增强网格网络的井下尘雾图像清晰化算法。该算法由前处理模块、主干模块和输出模块3个部分组成。前处理模块通过特征提取模块IRDB生成一组特征图,作为主干模块的输入,IRDB融合了Inception架构和密集残差连接模块(RDB)的优势,可在网络资源有限的情况下增加网络的深度和宽度,从而增强网络的表征能力、泛化能力及其对不同尺度尘雾的处理能力;主干模块采用网格网络进一步提取图像不同尺度的特征,并通过上采样和下采样实现特征图不同尺度的变换,为更好地捕捉图像中的细节信息,在网格网络中引入通道注意力机制。实验结果表明:IRDB数量为5时,网络模型的峰值信噪比(PSNR)、结构相似度指数(SSIM)和自然图像质量评价指标(NIQE)最好;从视觉效果上看,用所提算法清晰化处理后的图像细节信息更加丰富,色彩更加自然,具有良好的清晰度和对比度;在井下数据集上用所提算法处理后的图像PSNR、SSIM和NIQE分别为23.69,0.8401,8.95,图像处理速度处于中等水平,整体性能优于DCP,AOD−Net等同类算法。

     

  • 图  1  井下尘雾图像清晰化算法整体结构

    Figure  1.  Overall structure of the algorithm for clarifying underground dust and mist images

    图  2  SE模块网络结构

    Figure  2.  Squeeze and Excitation module network structure

    图  3  IRDB结构

    Figure  3.  Inception+Residual Dense Block (IRDB) structure

    图  4  Inception模块

    Figure  4.  Inception module

    图  5  井下自建数据集

    Figure  5.  Underground self-built data set

    图  6  场景1清晰化实验结果对比

    Figure  6.  Comparison of image clarification results for scenario 1

    图  7  场景2清晰化实验结果对比

    Figure  7.  Comparison of image clarification results for scenario 2

    图  8  场景3清晰化实验结果对比

    Figure  8.  Comparison of image clarification results for scenario 3

    图  9  场景4清晰化实验结果对比

    Figure  9.  Comparison of image clarification results for scenario 4

    图  10  场景5清晰化实验结果对比

    Figure  10.  Comparison of image clarification results for scenario 5

    图  11  不同算法对单幅图像的处理时间

    Figure  11.  Processing time of different algorithms for a single image

    表  1  消融实验结果

    Table  1.   Results of ablation experiments

    网络模型PSNRSSIMNIQE
    w/o IRDB21.570.74189.78
    w/o SE21.380.76049.88
    w/o IRDB+SE20.300.735310.24
    完整网络23.690.84018.95
    下载: 导出CSV

    表  2  不同网络配置下的实验结果

    Table  2.   Experimental results under different network configurations

    rcIRDB数量PSNRSSIMNIQE
    12115.210.660312.56
    24318.910.745110.84
    36523.690.84018.95
    下载: 导出CSV

    表  3  在合成数据集上的定量评价指标

    Table  3.   Quantitative evaluation indicators on synthetic datasets

    算法 PSNR SSIM NIQE
    DCP 16.61 0.8546 7.52
    AOD−Net 20.51 0.8162 9.73
    DehazeNet 19.82 0.8209 5.94
    GridDehazeNet 24.72 0.8642 6.94
    GFN 24.91 0.9186 9.13
    MSCNN 19.84 0.8327 5.79
    本文算法 31.42 0.9743 4.83
    下载: 导出CSV

    表  4  在井下数据集上的定量评价指标

    Table  4.   Quantitative evaluation indicators on underground datasets

    算法 PSNR SSIM NIQE
    DCP 22.35 0.8494 9.09
    AOD−Net 19.67 0.5315 9.53
    DehazeNet 11.11 0.3910 11.03
    GridDehazeNet 20.70 0.7791 9.79
    GFN 20.75 0.6792 10.25
    MSCNN 17.25 0.4923 9.51
    本文算法 23.69 0.8401 8.95
    下载: 导出CSV
  • [1] 张立. 矿山数字化转型与智能化管理[J]. 世界有色金属,2023(12):232-234. doi: 10.3969/j.issn.1002-5065.2023.12.075

    ZHANG Li. Digital transformation and intelligent management of mines[J]. World Nonferrous Metals,2023(12):232-234. doi: 10.3969/j.issn.1002-5065.2023.12.075
    [2] GU Yanan,GAO Yiming,LIU Hairong,et al. Multi-directional rain streak removal based on infimal convolution of oscillation TGV[J]. Neurocomputing,2022,486:61-76. doi: 10.1016/j.neucom.2022.02.059
    [3] 王道累,张天宇. 图像去雾算法的综述及分析[J]. 图学学报,2020,41(6):861-870.

    WANG Daolei,ZHANG Tianyu. Review and analysis of image defogging algorithm[J]. Journal of Graphics,2020,41(6):861-870.
    [4] 郑凤仙,王夏黎,何丹丹,等. 单幅图像去雾算法研究综述[J]. 计算机工程与应用,2022,58(3):1-14. doi: 10.3778/j.issn.1002-8331.2106-0134

    ZHENG Fengxian,WANG Xiali,HE Dandan,et al. Survey of single image defogging algorithm[J]. Computer Engineering and Applications,2022,58(3):1-14. doi: 10.3778/j.issn.1002-8331.2106-0134
    [5] 涂毅晗,汪普庆. 基于多尺度局部直方图均衡化的矿井图像增强方法[J]. 工矿自动化,2023,49(8):94-99.

    TU Yihan,WANG Puqing. Mine image enhancement method based on multi-scale local histogram equalization[J]. Journal of Mine Automation,2023,49(8):94-99.
    [6] 胡明宇,陈小桥,谢银波. 宽波段微型光谱仪的小波奇异值差分去噪[J]. 武汉大学学报(工学版),2021,54(3):269-276.

    HU Mingyu,CHEN Xiaoqiao,XIE Yinbo. Wavelet singular value difference de-noising for broadband micro spectrometer[J]. Engineering Journal of Wuhan University,2021,54(3):269-276.
    [7] 徐勤功,郭杜杜. 基于Retinex理论的暗光图像增强算法[J]. 中国科技论文,2023,18(11):1267-1274. doi: 10.3969/j.issn.2095-2783.2023.11.015

    XU Qingong,GUO Dudu. Low light image enhancement algorithm based on Retinex theory[J]. China Sciencepaper,2023,18(11):1267-1274. doi: 10.3969/j.issn.2095-2783.2023.11.015
    [8] 谢伟,余瑾,涂志刚,等. 消除光晕效应和保持细节信息的图像快速去雾算法[J]. 计算机应用研究,2019,36(4):1228-1231.

    XIE Wei,YU Jin,TU Zhigang,et al. Fast algorithm for image defogging by eliminating halo effect and preserving details[J]. Application Research of Computers,2019,36(4):1228-1231.
    [9] 闫新宇. 基于物理模型的图像去雾算法研究[D]. 北京:北京交通大学,2021:8-14.

    YAN Xinyu. Research of image dehazing algorithm based on physical model[D]. Beijing:Beijing Jiaotong University,2021:8-14.
    [10] 王媛彬,韦思雄,段誉,等. 基于自适应双通道先验的煤矿井下图像去雾算法[J]. 工矿自动化,2022,48(5):46-51,84.

    WANG Yuanbin,WEI Sixiong,DUAN Yu,et al. Defogging algorithm of underground coal mine image based on adaptive dual-channel prior[J]. Journal of Mine Automation,2022,48(5):46-51,84.
    [11] 黄鹤,胡凯益,郭璐,等. 改进的海雾图像去除方法[J]. 哈尔滨工业大学学报,2021,53(8):81-91. doi: 10.11918/202008105

    HUANG He,HU Kaiyi,GUO Lu,et al. Improved defogging algorithm for sea fog[J]. Journal of Harbin Institute of Technology,2021,53(8):81-91. doi: 10.11918/202008105
    [12] HE Kaiming,SUN Jian,TANG Xiao'ou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353. doi: 10.1109/TPAMI.2010.168
    [13] LIU Jianlei,YU Hao,ZHANG Zhongzheng,et al. Deep multi-scale network for single image dehazing with self-guided maps[J]. Signal,Image and Video Processing,2023,17(6):2867-2875. doi: 10.1007/s11760-023-02505-2
    [14] CHEN Zixuan,HE Zewei,LU Zheming. DEA-net:single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Transactions on Image Processing,2024,33:1002-1015. doi: 10.1109/TIP.2024.3354108
    [15] YANG Yizhong,HOU Ce,HUANG Haixia,et al. Cascaded deep residual learning network for single image dehazing[J]. Multimedia Systems,2023,29(4):2037-2048. doi: 10.1007/s00530-023-01087-w
    [16] WANG Zhendong,CUN Xiaodong,BAO Jianmin,et al. Uformer:a general U-shaped transformer for image restoration[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,2022:17662-17672.
    [17] 王满利,张航,李佳悦,等. 基于深度神经网络的煤矿井下低光照图像增强算法[J]. 煤炭科学技术,2023,51(9):231-241. doi: 10.12438/cst.2022-1626

    WANG Manli,ZHANG Hang,LI Jiayue,et al. Deep neural network-based image enhancement algorithm for low-illumination images underground coal mines[J]. Coal Science and Technology,2023,51(9):231-241. doi: 10.12438/cst.2022-1626
    [18] FOURURE D,EMONET R,FROMONT E,et al. Residual conv-deconv grid network for semantic segmentation[EB/OL]. [2024-06-10]. https://arxiv.org/abs/1707.07958v2.
    [19] HU Jie,SHEN Li,SUN Gang. Squeeze-and- excitation networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:7132-7141.
    [20] LI Boyi,PENG Xiulian,WANG Zhangyang,et al. AOD-net:all-in-one dehazing network[C]. IEEE International Conference on Computer Vision,Venice,2017:4780-4788.
    [21] CAI Bolun,XU Xiangmin,JIA Kui,et al. DehazeNet:an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing,2016,25(11):5187-5198. doi: 10.1109/TIP.2016.2598681
    [22] LIU Xiaohong,MA Yongrui,SHI Zhihao,et al. GridDehazeNet:attention-based multi-scale network for image dehazing[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:7313-7322.
    [23] REN Wenqi,MA Lin,ZHANG Jiawei,et al. Gated fusion network for single image dehazing[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:3253-3261.
    [24] REN Wenqi,LIU Si,ZHANG Hua,et al. Single Image Dehazing via Multi-scale Convolutional Neural Networks[C]. European Conference on Computer Vision,Munich,2016:154-169.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  26
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-10
  • 修回日期:  2024-10-28
  • 网络出版日期:  2024-09-29

目录

    /

    返回文章
    返回