留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PSO−ELM的综采工作面液压支架姿态监测方法

李磊 许春雨 宋建成 田慕琴 宋单阳 张杰 郝振杰 马锐

李磊,许春雨,宋建成,等. 基于PSO−ELM的综采工作面液压支架姿态监测方法[J]. 工矿自动化,2024,50(8):14-19.  doi: 10.13272/j.issn.1671-251x.2024070023
引用本文: 李磊,许春雨,宋建成,等. 基于PSO−ELM的综采工作面液压支架姿态监测方法[J]. 工矿自动化,2024,50(8):14-19.  doi: 10.13272/j.issn.1671-251x.2024070023
LI Lei, XU Chunyu, SONG Jiancheng, et al. Attitude monitoring method for hydraulic support in fully mechanized working face based on PSO-ELM[J]. Journal of Mine Automation,2024,50(8):14-19.  doi: 10.13272/j.issn.1671-251x.2024070023
Citation: LI Lei, XU Chunyu, SONG Jiancheng, et al. Attitude monitoring method for hydraulic support in fully mechanized working face based on PSO-ELM[J]. Journal of Mine Automation,2024,50(8):14-19.  doi: 10.13272/j.issn.1671-251x.2024070023

基于PSO−ELM的综采工作面液压支架姿态监测方法

doi: 10.13272/j.issn.1671-251x.2024070023
基金项目: 山西省1331工程“提质增效建设计划”项目(晋教科〔2021〕4号)。
详细信息
    作者简介:

    李磊(2001—),男,山西大同人,硕士研究生,研究方向为矿用智能电器,E-mail:2424016356@qq.com

  • 中图分类号: TD355.4

Attitude monitoring method for hydraulic support in fully mechanized working face based on PSO-ELM

  • 摘要: 针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液压支架顶梁支护姿态实时信息,对采集到的数据进行预处理,将处理后的数据输入PSO−ELM误差补偿模型中,得到解算误差预测值;同时通过卡尔曼滤波融合进行液压支架姿态解算,得到解算值;再用误差预测值对解算值进行误差补偿,从而求得更加准确的顶梁支护姿态数据。该方法只考虑加速度和角速度数据与解算误差的关系,不依赖具体的物理模型,可有效降低姿态解算累计误差。实验结果表明:液压支架顶梁俯仰角平均绝对误差由补偿前的1.420 8°减少到0.058 0°,且误差曲线具有良好的收敛性,验证了所提方法可持续稳定地监测液压支架的支护姿态。

     

  • 图  1  液压支架支护姿态

    Figure  1.  Supporting attitude of hydraulic support

    图  2  基于PSO−ELM的综采工作面液压支架姿态监测方法原理

    Figure  2.  Attitude monitoring method principle for hydraulic support in fully mechanized mining face based on particle swarm optimization and extreme learning machin(PSO-ELM)

    图  3  ELM误差预测模型结构

    Figure  3.  Structure of extreme learning machine(ELM) error prediction model

    图  4  PSO−ELM误差补偿流程

    Figure  4.  PSO-ELM error compensation flow

    图  5  顶梁俯仰角解算前后误差对比

    Figure  5.  Comparison of errors before and after calculating the pitch angle of the top beam

    图  6  俯仰角误差仿真结果

    Figure  6.  Simulation results of pitch angle error

    图  7  液压支架姿态监测实验平台

    Figure  7.  Hydraulic support attitude monitoring experimental platform

    图  8  误差补偿结果对比

    Figure  8.  Comparison of error compensation results

    图  9  俯仰角误差实验结果

    Figure  9.  Experimental results of pitch angle error

    表  1  不同模型的仿真结果

    Table  1.   Simulation results of different models

    模型 MAE/(°) RMSE/(°)
    卡尔曼滤波 0.094 2 0.121 0
    自适应卡尔曼滤波 0.060 8 0.075 9
    PSO−ELM误差补偿 0.030 5 0.038 3
    下载: 导出CSV

    表  2  不同模型的实验结果

    Table  2.   Experimental results of different models

    模型 MAE/(°) RMSE/(°)
    卡尔曼滤波 1.420 8 1.867 7
    自适应卡尔曼滤波 0.475 3 0.624 7
    PSO−ELM误差补偿 0.058 0 0.082 1
    下载: 导出CSV
  • [1] 王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5-12.

    WANG Guofa,FAN Jingdao,XU Yajun,et al. Innovation progress and prospect on key technologies of intelligent coal mining[J]. Industry and Mine Automation,2018,44(2):5-12.
    [2] 王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践——纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1-18.

    WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years:commemorate the 50th anniversary of the publication of Coal Science and Technology[J]. Coal Science and Technology,2023,51(1):1-18.
    [3] 马旭东,许春雨,宋建成. 综采工作面液压支架姿态监测系统设计[J]. 煤炭技术,2019,38(7):174-177.

    MA Xudong,XU Chunyu,SONG Jiancheng. Design of attitude monitoring system for hydraulic support in fully mechanized face[J]. Coal Technology,2019,38(7):174-177.
    [4] 杨崇浩,白国长. 基于数字孪生的液压支架姿态监测[J]. 机床与液压,2023,51(22):39-44. doi: 10.3969/j.issn.1001-3881.2023.22.007

    YANG Chonghao,BAI Guochang. Attitude monitoring of hydraulic support based on digital twin[J]. Machine Tool & Hydraulics,2023,51(22):39-44. doi: 10.3969/j.issn.1001-3881.2023.22.007
    [5] 杨金衡,宋单阳,田慕琴,等. 基于自适应卡尔曼滤波的双惯导采煤机定位方法[J]. 工矿自动化,2021,47(7):14-20,28.

    YANG Jinheng,SONG Danyang,TIAN Muqin,et al. Double inertial navigation shearer positioning method based on adaptive Kalman filter[J]. Industry and Mine Automation,2021,47(7):14-20,28.
    [6] 王勇,刘文江,胡军,等. 多传感器检测系统的自适应融合算法[J]. 西安电子科技大学学报(自然科学版),2004,31(3):483-487. doi: 10.3969/j.issn.1001-2400.2004.03.035

    WANG Yong,LIU Wenjiang,HU Jun,et al. The adaptive fusion algorithm in multiple-sensors detecion system[J]. Journal of Xidian University,2004,31(3):483-487. doi: 10.3969/j.issn.1001-2400.2004.03.035
    [7] 银桥. 基于多传感器信息融合的运动系统姿态解算方法研究[D]. 桂林:桂林电子科技大学,2022.

    YIN Qiao. Research on attitude calculation method of motion system based on multi-sensor information fusion[D]. Guilin:Guilin University of Electronic Technology,2022.
    [8] 张坤,孙政贤,刘亚,等. 基于信息融合技术的超前液压支架姿态感知方法及实验验证[J]. 煤炭学报,2023,48(增刊1):345-356.

    ZHANG Kun,SUN Zhengxian,LIU Ya,et al. Advanced hydraulic support posture perception method based on information fusion technology and experimental verification[J]. Journal of China Coal Society,2023,48(S1):345-356.
    [9] 张坤. 基于信息融合技术的液压支架姿态监测方法研究[D]. 太原:太原理工大学,2018.

    ZHANG Kun. Research on attitude monitoring method of hydraulic support based on information fusion technology[D]. Taiyuan:Taiyuan University of Technology,2018.
    [10] 司垒,王忠宾,王浩,等. 基于惯性传感组件和BP神经网络的防冲钻孔机器人钻具姿态解算[J]. 仪器仪表学报,2022,43(4):213-223.

    SI Lei,WANG Zhongbin,WANG Hao,et al. Drilling tool attitude calculation of drilling robot for rockburst prevention based on inertial sensing assembly and BP neural network[J]. Chinese Journal of Scientific Instrument,2022,43(4):213-223.
    [11] 徐西华. 液压支架姿态监测关键技术研究[D]. 徐州:中国矿业大学,2018.

    XU Xihua. Research on key technologies of hydraulic support posture monitoring[D]. Xuzhou:China University of Mining and Technology,2018.
    [12] 袁祥. 液压支架位姿-负载耦合特性分析及感知基础研究[D]. 太原:太原理工大学,2022.

    YUAN Xiang. Analysis of position-attitude- load coupling characteristics of hydraulic support and basic research on perception[D]. Taiyuan:Taiyuan University of Technology,2022.
    [13] 王忠乐. 液压支架姿态监测及控制技术[J]. 工矿自动化,2022,48(增刊2):116-117,137.

    WANG Zhongle. Posture monitoring and control technology of fully mechanized hydraulic support[J]. Journal of Mine Automation,2022,48(S2):116-117,137.
    [14] 陈冬方,李首滨. 基于液压支架倾角的采煤高度测量方法[J]. 煤炭学报,2016,41(3):788-793.

    CHEN Dongfang,LI Shoubin. Measurement of coal mining height based on hydraulic support structural angle[J]. Journal of China Coal Society,2016,41(3):788-793.
    [15] 彭道刚,段睿杰,王丹豪. 两级融合的多传感器数据融合算法研究[J]. 仪表技术与传感器,2024(1):87-93. doi: 10.3969/j.issn.1002-1841.2024.01.016

    PENG Daogang,DUAN Ruijie,WANG Danhao. Research on multi-sensor data fusion algorithm based on two-level fusion[J]. Instrument Technique and Sensor,2024(1):87-93. doi: 10.3969/j.issn.1002-1841.2024.01.016
    [16] 孙君令. 姿态数据驱动的液压支架运动状态监测技术研究[D]. 徐州:中国矿业大学,2019.

    SUN Junling. Research on monitoring technology of hydraulic support motion state driven by attitude data[D]. Xuzhou:China University of Mining and Technology,2019.
    [17] 王忠宾,司垒,王浩,等. 基于空间阵列式惯性单元的防冲钻孔机器人位姿解算方法[J]. 煤炭学报,2022,47(1):598-610.

    WANG Zhongbin,SI Lei,WANG Hao,et al. Position and attitude calculation method of anti-impact drilling robot based on spatial array inertial units[J]. Journal of China Coal Society,2022,47(1):598-610.
    [18] 常钰坤,曹港生,马振九,等. 基于PSO−LSTM模型的上肢动作识别方法[J/OL]. 华东理工大学学报(自然科学版):1-11[2024-06-20]. https://doi.org/10.14135/j.cnki.1006-3080.20231009001.

    CHANG Yukun,CAO Gangsheng,MA Zhenjiu,et al. Upper limb motion recognition method based on PSO-LSTM model[J]. Journal of East China University of Science and Technology (Natural Science Edition):1-11[2024-06-20]. https://doi.org/10.14135/j.cnki.1006-3080.20231009001.
    [19] 于海洋. 在线预测的极限学习机方法研究[D]. 长春:吉林大学,2019.

    YU Haiyang. Research on extreme learning machine method for online prediction[D]. Changchun:Jilin University,2019.
    [20] 李海锋. 基于BP神经网络的液压支架支护位姿运动学分析[J]. 煤炭工程,2018,50(9):117-120.

    LI Haifeng. Kinematics analysis of support position and posture of hydraulic support based on BP neural network[J]. Coal Engineering,2018,50(9):117-120.
    [21] 寇发荣,杨天祥,罗希,等. 基于ISSA−ELM算法的锂电池SOC估计 [J/OL]. 电源学报:1-8[2024-06-20]. http://kns.cnki.net/kcms/detail/12.1420.TM.20240229.1408.005.html.

    KOU Farong,YANG Tianxiang,LUO Xi,et al. Lithium battery SOC estimation based on ISSA-ELM algorithm[J/OL]. Journal of Power Supply:1-8[2024-06-20]. http://kns.cnki.net/kcms/detail/12.1420.TM.20240229.1408.005.html.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  32
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-08-17
  • 网络出版日期:  2024-08-16

目录

    /

    返回文章
    返回