留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

露天矿无人驾驶自卸车横−纵向协同控制研究

潘国宇 鲍久圣 胡德平 邹学耀 阴妍 王茂森 朱晨钟 张磊 杨瑞

潘国宇,鲍久圣,胡德平,等. 露天矿无人驾驶自卸车横−纵向协同控制研究[J]. 工矿自动化,2024,50(10):68-79.  doi: 10.13272/j.issn.1671-251x.2024070017
引用本文: 潘国宇,鲍久圣,胡德平,等. 露天矿无人驾驶自卸车横−纵向协同控制研究[J]. 工矿自动化,2024,50(10):68-79.  doi: 10.13272/j.issn.1671-251x.2024070017
PAN Guoyu, BAO Jiusheng, HU Deping, et al. Research on lateral-longitudinal coordinated control of unmanned dump trucks in open-pit mine[J]. Journal of Mine Automation,2024,50(10):68-79.  doi: 10.13272/j.issn.1671-251x.2024070017
Citation: PAN Guoyu, BAO Jiusheng, HU Deping, et al. Research on lateral-longitudinal coordinated control of unmanned dump trucks in open-pit mine[J]. Journal of Mine Automation,2024,50(10):68-79.  doi: 10.13272/j.issn.1671-251x.2024070017

露天矿无人驾驶自卸车横−纵向协同控制研究

doi: 10.13272/j.issn.1671-251x.2024070017
基金项目: 江苏省科技成果转化专项资金项目(BA2023035);徐州市重点研发计划资助项目(KC22419);江苏高校优势学科建设工程资助项目(PAPD)。
详细信息
    作者简介:

    潘国宇(1999—),男,江苏盐城人,硕士研究生,研究方向为矿山无人驾驶,E-mail:2116731830@qq.com

    通讯作者:

    鲍久圣(1979—),男,安徽桐城人,教授,博士,博士研究生导师,研究方向为矿山运输及其智能化,E-mail: cumtbjs@cumt.edu.cn

  • 中图分类号: TD57

Research on lateral-longitudinal coordinated control of unmanned dump trucks in open-pit mine

  • 摘要: 露天矿无人驾驶自卸车面临道路等级低且坡道弯道多、车辆载质量大且变化范围宽等恶劣运输工况,现有车辆运动控制策略多面向普通道路环境,无法直接将现有车辆控制策略应用于矿山自卸车。针对上述问题,提出了一种基于预瞄误差与分层反馈的露天矿无人驾驶自卸车横−纵向协同控制系统。横向控制以线性二次型调节器(LQR)为基础,运用前馈控制器降低稳态误差,采用模糊控制器实现自适应调整预瞄距离,以提高路径跟踪控制精度;纵向控制建立分层反馈式纵向速度控制器,分别采用模型预测控制和模糊PID反馈控制,并建立车辆驱动及制动逆向模型,降低自卸车载质量与道路坡度改变对纵向速度追踪的影响。仿真结果表明:① 车辆实际速度和期望速度误差在2%以内,说明自卸车在空载下坡与满载上坡2种工况下的速度跟踪效果能够满足要求。② 由于横−纵向协同控制能够针对路径曲率的不同实时调节车辆速度,在2种工况下,自卸车横−纵向协同控制器相比于单一横向控制都获得了更高的路径跟踪精度,同时也提高了自卸车的操纵稳定性。实验结果表明:① 空载下坡时的横向误差峰值为0.019 9 m,方向误差峰值为0.184 0 rad,误差增大均发生在弯道处,但误差波动范围较小,能够保证试验车对期望路径的跟踪。② 负载上坡时的横向误差峰值为0.016 8 m,方向误差峰值为0.071 4 rad,误差变化趋势与空载下坡试验相反,但误差仍在合理范围内,试验车的跟踪效果良好。③ 2个误差峰值均小于空载下坡试验,验证了不同速度对横向控制精度的影响规律。

     

  • 图  1  横向动力学模型

    Figure  1.  Lateral kinetic model

    图  2  纵向动力学模型

    Figure  2.  Longitudinal kinetic model

    图  3  横−纵向协同控制系统

    Figure  3.  Lateral-longitudinal coordinated control system

    图  4  路径跟踪预瞄误差模型

    Figure  4.  Path tracking preview error model

    图  5  隶属函数

    Figure  5.  Membership function

    图  6  自适应模糊控制器输入输出关系曲面

    Figure  6.  Surface plot of input-output relationship for adaptive fuzzy controller

    图  7  驱动/制动切换逻辑曲线

    Figure  7.  Logic curves of drive/brake switching

    图  8  露天矿自卸车基本工况

    Figure  8.  Basic working condition of open-pit mine dump truck

    图  9  回返式露天矿仿真道路

    Figure  9.  Simulation road of return-type open-pit mine

    图  10  露天矿自卸车期望速度曲线

    Figure  10.  Expected velocity curve of open-pit mine dump truck

    图  11  横−纵向协同控制器联合仿真模型

    Figure  11.  Co-simulation model of latera-longitudinal coordinated controller

    图  12  2种工况下期望速度跟踪误差曲线

    Figure  12.  Expected speed tracking error curve under two working conditions

    图  13  空载下坡工况路径跟踪主要参数仿真结果

    Figure  13.  Simulation results of main parameters for path tracking under no-load downhill condition

    图  14  满载上坡工况路径跟踪主要参数仿真结果

    Figure  14.  Simulation results of main parameters for path tracking under full load uphill condition

    图  15  无人驾驶自卸车模型试验车组成

    Figure  15.  Composition of unmanned dump truck model test truck

    图  16  设计的露天矿模拟试验道路

    Figure  16.  Open-pit mine simulation test road

    图  17  模拟试验道路模型

    Figure  17.  Simulation test road model

    图  18  激光雷达生成的栅格地图

    Figure  18.  LiDAR-generated raster map

    图  19  ROS中生成的规划路径

    Figure  19.  Planning path generated in ROS

    图  20  空载下坡模拟试验结果

    Figure  20.  Results of no-load downhill simulation test

    图  21  负载上坡模拟试验结果

    Figure  21.  Results of load uphill simulation test

    表  1  模糊控制规则

    Table  1.   Fuzzy control rules

    vx k
    k1 k2 k3 k4 k5 k6 k7
    v1 l3 l2 l2 l2 l1 l1 l1
    v2 l4 l4 l3 l3 l2 l2 l1
    v3 l5 l4 l4 l3 l3 l2 l2
    v4 l6 l5 l5 l4 l4 l3 l3
    v5 l6 l6 l5 l5 l4 l4 l3
    v6 l7 l6 l6 l5 l5 l4 l4
    v7 l7 l7 l6 l6 l5 l5 l4
    下载: 导出CSV

    表  2  自卸车仿真参数

    Table  2.   Simulation parameters of dump truck

    车辆参数数值
    车辆质量/kg30000
    额定载质量/kg60000
    发动机功率/rpm338/2100
    质心距前轴的距离/m1.385
    质心距前轴的距离/m3.75
    下载: 导出CSV

    表  3  模型试验车基本参数

    Table  3.   Basic parameters of model test vehicle

    类型 参数名称 数值
    车辆参数 尺寸/mm×mm×mm 240.5×191×146
    轮距/m 0.16
    轴距/m 0.142
    整车质量/kg 1.8
    驱动电动机 额定功率/W 4.32
    额定扭矩/(kg·m) 1
    舵机 最大角度/(°) 180
    扭矩/(kg·cm) 15.3~20
    惯性测量单元 陀螺仪量程/((°)·s−1 ±150/500/1 000/2 000
    加速度量程 ±2g/4g/8g/16g
    罗盘量程/μT ±4 800
    单线激光雷达 扫描角度/(°) 0~360
    扫描频率/Hz 5.5
    主控制器 CPU ARM Cortex A57 64 bit@1.43 GHz
    GPU 128−core Maxwell@921 MHz
    内存/(GiB·s−1) 4 GiB 64 bit LPDDR4 |25.6
    下载: 导出CSV
  • [1] NEBOT E M. Surface mining:main research issues for autonomous operations[M]. Heidelberg:Springer Berlin Heidelberg,2007:268-280.
    [2] 钱建生,胡青松. 智能煤矿建设路线与工程实践[J]. 煤炭科学技术,2020,48(7):109-117.

    QIAN Jiansheng,HU Qingsong. Construction routes and practice of intelligent coal mine[J]. Coal Science and Technology,2020,48(7):109-117.
    [3] 鲍久圣,刘琴,葛世荣,等. 矿山运输装备智能化技术研究现状及发展趋势[J]. 智能矿山,2020,1(1):78-88.

    BAO Jiusheng,LIU Qin,GE Shirong,et al. Research status and development trend of intelligent technologies for mine transportation equipment[J]. Journal of Intelligent Mine,2020,1(1):78-88.
    [4] 鲍久圣,张牧野,葛世荣,等. 基于改进A*和人工势场算法的无轨胶轮车井下无人驾驶路径规划[J]. 煤炭学报,2022,47(3):1347-1360.

    BAO Jiusheng,ZHANG Muye,GE Shirong,et al. Underground driverless path planning of trackless rubber tyred vehicle based on improved A* and artificial potential field algorithm[J]. Journal of China Coal Society,2022,47(3):1347-1360.
    [5] 李庆玲,张慧祥,赵旭阳,等. 露天矿无人驾驶自卸卡车发展综述[J]. 煤炭工程,2021,53(2):29-34.

    LI Qingling,ZHANG Huixiang,ZHAO Xuyang, et al. Overview of unmanned mining trucks in open-pit mine[J]. Coal Engineering,2021,53(2):29-34.
    [6] 唐传茵,赵懿峰,赵亚峰,等. 智能车辆轨迹跟踪控制方法研究[J]. 东北大学学报(自然科学版),2020,41(9):1297-1303.

    TANG Chuanyin,ZHAO Yifeng,ZHAO Yafeng,et al. Research on the trajectory tracking control method of intelligent vehicles[J]. Journal of Northeastern University (Natural Science),2020,41(9):1297-1303.
    [7] 闫凌,黄佳德. 矿用卡车无人驾驶系统研究[J]. 工矿自动化,2021,47(4):19-29.

    YAN Ling,HUANG Jiade. Research on unmanned driving system of mine-used truck[J]. Industry and Mine Automation,2021,47(4):19-29.
    [8] 周琳. 履带车辆路径规划与轨迹跟踪控制方法研究[D]. 长春:吉林大学,2020.

    ZHOU Lin. Research on path planning and trajectory tracking control method of tracked vehicle[D]. Changchun:Jilin University,2020.
    [9] ZHOU Hongliang,JIA Fengjiao,JING Houhua,et al. Coordinated longitudinal and lateral motion control for four wheel independent motor-drive electric vehicle[J]. IEEE Transactions on Vehicular Technology,2018,67(5):3782-3790. doi: 10.1109/TVT.2018.2816936
    [10] 熊璐,杨兴,卓桂荣,等. 无人驾驶车辆的运动控制发展现状综述[J]. 机械工程学报,2020,56(10):127-143. doi: 10.3901/JME.2020.10.127

    XIONG Lu,YANG Xing,ZHUO Guirong,et al. Review on motion control of autonomous vehicles[J]. Journal of Mechanical Engineering,2020,56(10):127-143. doi: 10.3901/JME.2020.10.127
    [11] ZIEGLER J,BENDER P,SCHREIBER M,et al. Making bertha drive-an autonomous journey on a historic route[J]. IEEE Intelligent Transportation Systems Magazine,2014,6(2):8-20. doi: 10.1109/MITS.2014.2306552
    [12] XU Shaobing,PENG Huei. Design,analysis,and experiments of preview path tracking control for autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2020,21(1):48-58. doi: 10.1109/TITS.2019.2892926
    [13] WANG Jianqiang,ZHANG Lei,ZHANG Dezhao,et al. An adaptive longitudinal driving assistance system based on driver characteristics[J]. IEEE Transactions on Intelligent Transportation Systems,2013,14(1):1-12. doi: 10.1109/TITS.2012.2205143
    [14] ZHU Qi,HUANG Zhenhua,LIU Daxue,et al. An adaptive path tracking method for autonomous land vehicle based on neural dynamic programming[C]. IEEE International Conference on Mechatronics and Automation,Harbin,2016:1429-1434.
    [15] 谭宇航. 基于MFAPC的智能车辆跟随式自动驾驶纵向加速度控制算法[J]. 汽车实用技术,2023,48(9):59-65.

    TAN Yuhang. Longitudinal acceleration control of intelligent vehicle following autonomous driving based on MFAPC[J]. Automobile Applied Technology,2023,48(9):59-65.
    [16] 周红梅,胡广地,崔然滔,等. 基于模型预测控制的智能车辆横纵向综合控制研究[J]. 机械,2023,50(6):15-22. doi: 10.3969/j.issn.1006-0316.2023.06.003

    ZHOU Hongmei,HU Guangdi,CUI Rantao,et al. Longitudinal and lateral integrated control of intelligent vehicle based on model predictive control[J]. Machinery,2023,50(6):15-22. doi: 10.3969/j.issn.1006-0316.2023.06.003
    [17] RAJAMANI R,TAN H S,LAW B K,et al. Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons[J]. IEEE Transactions on Control Systems Technology,2000,8(4):695-708. doi: 10.1109/87.852914
    [18] 邓涛,李鑫. 智能车辆横纵向运动综合控制方法研究[J]. 重庆交通大学学报(自然科学版),2021,40(4):133-140. doi: 10.3969/j.issn.1674-0696.2021.04.20

    DENG Tao,LI Xin. Combined control method of intelligent vehicle longitudinal and lateral motion[J]. Journal of Chongqing Jiaotong University(Natural Science),2021,40(4):133-140. doi: 10.3969/j.issn.1674-0696.2021.04.20
    [19] 郭景华,罗禹贡,李克强. 智能电动车辆横纵向协调与重构控制[J]. 控制理论与应用,2014,31(9):1238-1244. doi: 10.7641/CTA.2014.30863

    GUO Jinghua,LUO Yugong,LI Keqiang. Cooperative and reconfigurable lateral and longitudinal control of intelligent electric vehicles[J]. Control Theory & Applications,2014,31(9):1238-1244. doi: 10.7641/CTA.2014.30863
    [20] 邹学耀. 露天矿无人驾驶自卸车横-纵向协同控制方法研究[D]. 徐州:中国矿业大学,2022.

    ZOU Xueyao. Research on horizontal-vertical cooperative control method of unmanned dump truck in open-pit mine[D]. Xuzhou:China University of Mining and Technology,2022.
    [21] 王陈,鲍久圣,袁晓明,等. 无轨胶轮车井下无人驾驶系统设计及控制策略研究[J]. 煤炭学报,2021,46(S1):520-528.

    WANG Chen,BAO Jiusheng,YUAN Xiaoming,et al. Design and control strategy of underground driverless system for trackless rubber tire vehicle[J]. Journal of China Coal Society,2021,46(S1):520-528.
    [22] 余米森,钱玉宝,黄华宝,等. 连续工况下基于PID+LQR算法的自动驾驶车辆横纵向耦合控制[J]. 科学技术与工程,2022,22(30):13490-13496. doi: 10.3969/j.issn.1671-1815.2022.30.043

    YU Misen,QIAN Yubao,HUANG Huabao,et al. Lateral and longitudinal coupling control of autonomous vehicle based on PID+LQR algorithm under continuous conditions[J]. Science Technology and Engineering,2022,22(30):13490-13496. doi: 10.3969/j.issn.1671-1815.2022.30.043
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  19
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-05
  • 修回日期:  2024-10-31
  • 网络出版日期:  2024-11-08

目录

    /

    返回文章
    返回