留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模糊神经网络PID的煤矿掘进机俯仰控制研究

毛清华 陈彦璋 马骋 王川伟 张飞 柴建权

毛清华,陈彦璋,马骋,等. 基于模糊神经网络PID的煤矿掘进机俯仰控制研究[J]. 工矿自动化,2024,50(8):135-143.  doi: 10.13272/j.issn.1671-251x.2024070014
引用本文: 毛清华,陈彦璋,马骋,等. 基于模糊神经网络PID的煤矿掘进机俯仰控制研究[J]. 工矿自动化,2024,50(8):135-143.  doi: 10.13272/j.issn.1671-251x.2024070014
MAO Qinghua, CHEN Yanzhang, MA Cheng, et al. Research on pitch control of coal mine roadheader based on fuzzy neural network PID[J]. Journal of Mine Automation,2024,50(8):135-143.  doi: 10.13272/j.issn.1671-251x.2024070014
Citation: MAO Qinghua, CHEN Yanzhang, MA Cheng, et al. Research on pitch control of coal mine roadheader based on fuzzy neural network PID[J]. Journal of Mine Automation,2024,50(8):135-143.  doi: 10.13272/j.issn.1671-251x.2024070014

基于模糊神经网络PID的煤矿掘进机俯仰控制研究

doi: 10.13272/j.issn.1671-251x.2024070014
基金项目: 国家重点研发计划资助项目(2023YFC2907600);国家自然科学基金资助项目(52174150);陕西省重点研发计划专项项目(2023-LL-QY—03)。
详细信息
    作者简介:

    毛清华(1984—),男,江西吉安人,教授,博士,研究方向为煤矿机电设备智能检测与控制及机器人、机械传动系统故障诊断和图像智能识别等,E-mail:maoqh@xust.edu.cn

    通讯作者:

    陈彦璋(2000—),男,陕西咸阳人,硕士研究生,研究方向为煤矿机电设备智能检测与控制,E-mail:1192747657@qq.com

  • 中图分类号: TD632.2

Research on pitch control of coal mine roadheader based on fuzzy neural network PID

  • 摘要: 目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出了一种基于模糊神经网络PID的煤矿掘进机俯仰控制方法。通过分析掘进机支撑部运动学关系,得到俯仰角与支撑部液压缸的数学关系;介绍了掘进机俯仰控制液压系统工作原理,建立了液压系统及其传递函数模型;将模糊控制与神经网络相结合,形成模糊神经网络,利用模糊神经网络优化PID控制参数,再结合支撑机构数学模型和液压系统传递函数模型,建立掘进机俯仰角模糊神经网络PID控制模型,实现煤矿掘进机俯仰机构自动精确控制。该方法可使掘进机俯仰机构更加快速、准确到达预设位置,解决掘进机俯仰控制中的时变性与非线性难题。仿真结果表明:模糊神经网络PID控制算法相较于模糊PID和PID控制算法,跟踪误差分别降低了69.34%和74.49%。通过液压缸位移控制模拟煤矿掘进机在突变工况和跟随工况下的俯仰控制,结果表明:模糊神经网络PID控制算法相比模糊PID和PID控制算法,俯仰控制跟踪误差最小,对位置信号的平均响应时间分别缩短了27.22%和50.33%,动态控制性能更好。

     

  • 图  1  掘进机支撑机构与机身俯仰角

    Figure  1.  Support mechanism and body pitch angle of roadheader

    图  2  前铲板与后支撑结构

    Figure  2.  Front shovel plate and rear support structure

    图  3  掘进机俯仰控制液压系统

    1—液压缸;2—双液控单向阀;3—溢流阀;4—单向阀;5—数控液压阀;6—减压阀;7—液压泵。

    Figure  3.  Pitch control hydraulic system of roadheader

    图  4  模糊神经网络PID控制模型

    Figure  4.  Fuzzy neural network PID control model

    图  5  模糊神经网络结构

    Figure  5.  Structure of fuzzy neural network

    图  6  掘进机俯仰控制仿真模型

    Figure  6.  Simulation model for pitch control of roadheader

    图  7  阶跃信号响应及其误差曲线

    Figure  7.  Step signal response and its error curves

    图  8  正弦信号响应及其误差曲线

    Figure  8.  Sinusoidal signal response and its error curves

    图  9  方波信号响应及其误差曲线

    Figure  9.  Square wave signal response and its error curves

    图  10  掘进机俯仰控制实验平台

    Figure  10.  Experimental platform for pitch control of roadheader

    图  11  方波信号轨迹跟踪及其误差曲线

    Figure  11.  Square wave signal trajectory tracking and its error curves

    图  12  正弦信号轨迹跟踪及其误差曲线

    Figure  12.  Sinusoidal signal trajectory tracking and it error curves

    表  1  模糊控制规则

    Table  1.   Fuzzy control rule

    $\Delta e$ e
    NB NM NS ZO PS PM PB
    NB PB/NS/PS PB/NB/NS PM/NM/NB PM/NM/NB PS/NS/NB ZO/ZO/NM ZO/ZO/PS
    NM PB/NB/PS PB/NB/NS PM/NM/NB PS/NS/NM PS/NS/NM ZO/ZO/NS NS/ZO/ZO
    NS PM/NB/ZO PM/NM/NS PM/NS/NM PS/NS/NM ZO/ZO/NS NS/PS/NS NS/PS/ZO
    ZO PM/NM/ZO PM/NM/NS PS/NS/NS ZO/ZO/NS NS/PS/NS NM/PM/NS NM/PM/ZO
    PS PS/NM/ZO PS/NS/ZO ZO/ZO/ZO NS/PS/ZO NS/PS/ZO NM/PM/ZO NM/PB/ZO
    PM PS/ZO/PB ZO/ZO/NS NS/PS/PS NM/PS/PS NM/PM/PS NM/PB/PS NB/PB/PB
    PB ZO/ZO/PB ZO/ZO/PM NM/PS/PM NM/PM/PM NM/PM/PS NB/PB/PS NB/PB/PB
    下载: 导出CSV

    表  2  液压系统主要参数

    Table  2.   Main parameters of hydraulic system

    参数
    质量/mg1.5×104
    比例阀流量放大系数1.4×10−4
    比例阀流量压力系数2.4×10−4
    液压缸等效容积/mm35×105
    液压缸截面积/mm22450
    有效体积弹性模量/Pa7×108
    冲程长度/mm400
    溢流阀开启压力/(kN·m−22×104
    液压油密度/(kg·m−3850
    下载: 导出CSV

    表  3  2种不同信号跟踪结果

    Table  3.   Tracking results of two different signals

    工况环境控制算法跟踪误差/mm
    正弦信号模糊神经网络PID0.003 2
    模糊PID0.015 0
    PID0.015 8
    方波信号模糊神经网络PID0.004 0
    模糊PID0.010 0
    PID0.013 0
    下载: 导出CSV

    表  4  方波信号响应时间及跟踪误差

    Table  4.   Response time and tracking error of square wave signal

    控制算法时间段/s响应时间/s跟踪误差/mm
    PID0~102.211.0
    10~201.97
    20~302.12
    模糊PID0~101.400.5
    10~201.47
    20~301.43
    模糊神经网络PID0~101.060.2
    10~201.02
    20~301.05
    下载: 导出CSV

    表  5  正弦信号动态性能对比

    Table  5.   Comparison of dynamic performance of sinusoidal signals

    控制算法滞后时间/s峰值误差/mm
    PID0.360.5
    模糊PID0.270.3
    模糊神经网络PID0.070.1
    下载: 导出CSV
  • [1] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.

    GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46.
    [2] 臧富雨,王凯硕,吉晓冬,等. 悬臂式掘进机俯仰角调控系统仿真研究[J]. 工矿自动化,2019,45(5):62-67.

    ZANG Fuyu,WANG Kaishuo,JI Xiaodong,et al. Simulation research on pitch angle control system of boom roadheader[J]. Industry and Mine Automation,2019,45(5):62-67.
    [3] 张晓光,杨悦,孙彦景,等. 基于多频连续波相位差测距的掘进机位姿识别方法[J]. 煤炭学报,2020,45(6):2056-2064.

    ZHANG Xiaoguang,YANG Yue,SUN Yanjing,et al. Pose recognition method of roadheader based on multifrequency continuous-wave phase-difference ranging[J]. Journal of China Coal Society,2020,45(6):2056-2064.
    [4] ZHANG Minjun,LYU Fuyan,FU Shichen,et al. Study on the pitch angle control of a robotized hydraulic drive roadheader using different control methods[J]. Journal of Mechanical Science and Technology,2018,32(10):4893-4901. doi: 10.1007/s12206-018-0937-7
    [5] 张敏骏,吉晓冬,李旭,等. 掘进机姿态调整模型辨识方法与精准控制[J]. 西安交通大学学报,2021,55(6):9-17.

    ZHANG Minjun,JI Xiaodong,LI Xu,et al. Method of model identification and precise control for tunnel boring machine body posture adjustment[J]. Journal of Xi'an Jiaotong University,2021,55(6):9-17.
    [6] 王东杰,王鹏江,李悦,等. 掘进机截割臂自适应截割控制策略研究[J]. 中国机械工程,2022,33(20):2492-2501.

    WANG Dongjie,WANG Pengjiang,LI Yue,et al. Research on adaptive cutting control strategy of roadheader cutting arms[J]. China Mechanical Engineering,2022,33(20):2492-2501.
    [7] 张旭辉,石硕,杨红强,等. 悬臂式掘进机自主调速截割控制系统[J]. 工矿自动化,2023,49(1):80-89.

    ZHANG Xuhui,SHI Shuo,YANG Hongqiang,et al. Boom-type roadheader autonomous speed regulation cutting control system[J]. Journal of Mine Automation,2023,49(1):80-89.
    [8] 刘志森. 悬臂式掘进机截割部恒功率调速控制系统研究[D]. 阜新:辽宁工程技术大学,2012.

    LIU Zhisen. Research on constant power speed regulation control system for cutting part of cantilever roadheader[D]. Fuxin:Liaoning Technical University,2012.
    [9] 王苏彧,田劼,吴淼. 纵轴式掘进机截割轨迹规划及边界控制方法研究[J]. 煤炭科学技术,2016,44(4):89-94,118.

    WANG Suyu,TIAN Jie,WU Miao. Study on cutting trace planning of longitudinal roadheader and boundary control method[J]. Coal Science and Technology,2016,44(4):89-94,118.
    [10] 王鹏江,沈阳,宗凯,等. 结合LSTM深度学习和模糊推理控制的巷道掘进机智能联合截割策略与方法 [J/OL]. 煤炭学报:1-14[2024-06-21]. https://doi.org/ 10.13225/j.cnki.jccs.2023.1612.

    WANG Pengjiang,SHEN Yang,ZONG Kai,et al. Intelligent joint cutting strategy and method of roadheader combined with LSTM deep learning and fuzzy reasoning control[J/OL]. Journal of China Coal Society:1-14[2024-06-21]. https://doi.org/10.13225/ j.cnki.jccs.2023.1612.
    [11] CHELUSZKA P,SOBOTA P,GŁUSZEK G. Studies of behaviour of the automatic control system of roadheader cutting heads movement[J]. MATEC Web of Conferences,2019,252. DOI: 10.1051/matecconf/201925209002.
    [12] 郭伦锋,郭一楠,蒋康庆,等. 掘进机姿态参数测量及解算方法[J]. 工矿自动化,2021,47(12):46-54.

    GUO Lunfeng,GUO Yinan,JIANG Kangqing,et al. Measurement and calculation method of attitude parameters of roadheader[J]. Industry and Mine Automation,2021,47(12):46-54.
    [13] 费烨,孙波,林闯. EBZ160悬臂式掘进机液压系统设计[J]. 液压与气动,2015,39(2):103-106. doi: 10.11832/j.issn.1000-4858.2015.02.026

    FEI Ye,SUN Bo,LIN Chuang. The design for hydraulic system of EBZ160 cantilever tunneling machine[J]. Chinese Hydraulics & Pneumatics,2015,39(2):103-106. doi: 10.11832/j.issn.1000-4858.2015.02.026
    [14] 王志武. 掘进机行走机构液压系统液压冲击的分析与处理[J]. 机床与液压,2013,41(4):108-109. doi: 10.3969/j.issn.1001-3881.2013.04.032

    WANG Zhiwu. Analysis and treatment of hydraulic shock in hydraulic system of roadheader traveling mechanism[J]. Machine Tool & Hydraulics,2013,41(4):108-109. doi: 10.3969/j.issn.1001-3881.2013.04.032
    [15] 陶建峰,刘成良. 全断面岩石隧道掘进机液压技术研究现状[J]. 液压与气动,2015,39(6):1-5,12. doi: 10.11832/j.issn.1000-4858.2015.06.001

    TAO Jianfeng,LIU Chengliang. Review of technical research for hydraulic system of tunnel boring machine[J]. Chinese Hydraulics & Pneumatics,2015,39(6):1-5,12. doi: 10.11832/j.issn.1000-4858.2015.06.001
    [16] 张敏骏. 悬臂式掘进机自主纠偏与位姿控制研究[D]. 北京:中国矿业大学(北京),2019.

    ZHANG Minjun. Research on autonomous correction and pose control of cantilever tunneling machine[D]. Beijing:China University of Mining & Technology-Beijing,2019.
    [17] 张建广. 悬臂式掘进机自适应截割控制系统研究[J]. 煤炭科学技术,2016,44(2):148-152.

    ZHANG Jianguang. Study on adaptive cutting control system of boom-type roadheader[J]. Coal Science and Technology,2016,44(2):148-152.
    [18] 雷孟宇,张旭辉,杨文娟,等. 煤矿掘进装备视觉位姿检测与控制研究现状与趋势[J]. 煤炭学报,2021,46(增刊2):1135-1148.

    LEI Mengyu,ZHANG Xuhui,YANG Wenjuan,et al. Research status and trend of visual pose detection and control of coal mine tunneling equipment[J]. Journal of China Coal Society,2021,46(S2):1135-1148.
    [19] 范子彦,李立君,李宇航,等. 油茶果采摘机阀控液压马达模糊神经网络PID控制[J]. 液压与气动,2021,45(11):76-85. doi: 10.11832/j.issn.1000-4858.2021.11.011

    FAN Ziyan,LI Lijun,LI Yuhang,et al. Fuzzy neural network PID control of valve-controlled hydraulic motor for camellia fruit picking machine[J]. Chinese Hydraulics & Pneumatics,2021,45(11):76-85. doi: 10.11832/j.issn.1000-4858.2021.11.011
    [20] 敖邦乾,姜孝均,董泽芳,等. 基于神经网络−PID控制的水面无人艇控制系统设计[J]. 控制工程,2024,31(7):1178-1184.

    AO Bangqian,JIANG Xiaojun,DONG Zefang,et al. Design of unmanned surface vehicle control system based on neural network-PID control[J]. Control Engineering of China,2024,31(7):1178-1184.
    [21] DHIMISH M,HOLMES V,MEHRDADI B,et al. Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection[J]. Renewable Energy,2018,117:257-274. doi: 10.1016/j.renene.2017.10.066
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  36
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-08-19
  • 网络出版日期:  2024-08-12

目录

    /

    返回文章
    返回