Research on pitch control of coal mine roadheader based on fuzzy neural network PID
-
摘要: 目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出了一种基于模糊神经网络PID的煤矿掘进机俯仰控制方法。通过分析掘进机支撑部运动学关系,得到俯仰角与支撑部液压缸的数学关系;介绍了掘进机俯仰控制液压系统工作原理,建立了液压系统及其传递函数模型;将模糊控制与神经网络相结合,形成模糊神经网络,利用模糊神经网络优化PID控制参数,再结合支撑机构数学模型和液压系统传递函数模型,建立掘进机俯仰角模糊神经网络PID控制模型,实现煤矿掘进机俯仰机构自动精确控制。该方法可使掘进机俯仰机构更加快速、准确到达预设位置,解决掘进机俯仰控制中的时变性与非线性难题。仿真结果表明:模糊神经网络PID控制算法相较于模糊PID和PID控制算法,跟踪误差分别降低了69.34%和74.49%。通过液压缸位移控制模拟煤矿掘进机在突变工况和跟随工况下的俯仰控制,结果表明:模糊神经网络PID控制算法相比模糊PID和PID控制算法,俯仰控制跟踪误差最小,对位置信号的平均响应时间分别缩短了27.22%和50.33%,动态控制性能更好。Abstract: Currently, PID control method is mainly used for the pitch control of coal mine roadheader, and the control precision is not high in the case of time-varying and nonlinear hydraulic system during the pitch control of roadheader. The pitch control of roadbeader is realized by controlling the stroke of the hydraulic cylinder. Combining the traditional PID algorithm with fuzzy control and neural network, the accuracy of the stroke control of the hydraulic cylinder can be effectively improved. In order to solve the above problems, a pitch control method for coal mine roadheader based on fuzzy neural network PID is proposed. By analyzing the kinematic relationship of the support part of the roadheader, the mathematical relationship between the pitch angle and the hydraulic cylinder of the support part is obtained. The working principle of the pitch control hydraulic system of the roadheader is introduced, and the hydraulic system and its transfer function model are established. The method combines fuzzy control with neural networks to form a fuzzy neural network. The method optimizes PID control parameters by using the fuzzy neural network. The method combines the mathematical model of the support mechanism and the transfer function model of the hydraulic system to establish a fuzzy neural network PID control model for the pitch angle of the roadheader. It achieves automatic and precise control of the pitch mechanism of the coal mine roadheader. This method can make the pitch mechanism of the roadheader reach the preset position more quickly and accurately, solving the time-varying and nonlinear problems in the pitch control of roadheader. The simulation results show that the fuzzy neural network PID control algorithm reduces tracking errors by 69.34% and 74.49% respectively compared to fuzzy PID and PID control algorithms. The method simulates the pitch control of coal mine roadheaders under sudden and following working conditions through hydraulic cylinder displacement control. The results show that compared with fuzzy PID and PID control algorithms, the fuzzy neural network PID control algorithm has the smallest pitch control tracking error, shortens the average response time to position signals by 27.22% and 50.33% respectively, and has better dynamic control performance.
-
表 1 模糊控制规则
Table 1. Fuzzy control rule
$\Delta e$ e NB NM NS ZO PS PM PB NB PB/NS/PS PB/NB/NS PM/NM/NB PM/NM/NB PS/NS/NB ZO/ZO/NM ZO/ZO/PS NM PB/NB/PS PB/NB/NS PM/NM/NB PS/NS/NM PS/NS/NM ZO/ZO/NS NS/ZO/ZO NS PM/NB/ZO PM/NM/NS PM/NS/NM PS/NS/NM ZO/ZO/NS NS/PS/NS NS/PS/ZO ZO PM/NM/ZO PM/NM/NS PS/NS/NS ZO/ZO/NS NS/PS/NS NM/PM/NS NM/PM/ZO PS PS/NM/ZO PS/NS/ZO ZO/ZO/ZO NS/PS/ZO NS/PS/ZO NM/PM/ZO NM/PB/ZO PM PS/ZO/PB ZO/ZO/NS NS/PS/PS NM/PS/PS NM/PM/PS NM/PB/PS NB/PB/PB PB ZO/ZO/PB ZO/ZO/PM NM/PS/PM NM/PM/PM NM/PM/PS NB/PB/PS NB/PB/PB 表 2 液压系统主要参数
Table 2. Main parameters of hydraulic system
参数 值 质量/mg 1.5×104 比例阀流量放大系数 1.4×10−4 比例阀流量压力系数 2.4×10−4 液压缸等效容积/mm3 5×105 液压缸截面积/mm2 2450 有效体积弹性模量/Pa 7×108 冲程长度/mm 400 溢流阀开启压力/(kN·m−2) 2×104 液压油密度/(kg·m−3) 850 表 3 2种不同信号跟踪结果
Table 3. Tracking results of two different signals
工况环境 控制算法 跟踪误差/mm 正弦信号 模糊神经网络PID 0.003 2 模糊PID 0.015 0 PID 0.015 8 方波信号 模糊神经网络PID 0.004 0 模糊PID 0.010 0 PID 0.013 0 表 4 方波信号响应时间及跟踪误差
Table 4. Response time and tracking error of square wave signal
控制算法 时间段/s 响应时间/s 跟踪误差/mm PID 0~10 2.21 1.0 10~20 1.97 20~30 2.12 模糊PID 0~10 1.40 0.5 10~20 1.47 20~30 1.43 模糊神经网络PID 0~10 1.06 0.2 10~20 1.02 20~30 1.05 表 5 正弦信号动态性能对比
Table 5. Comparison of dynamic performance of sinusoidal signals
控制算法 滞后时间/s 峰值误差/mm PID 0.36 0.5 模糊PID 0.27 0.3 模糊神经网络PID 0.07 0.1 -
[1] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46. [2] 臧富雨,王凯硕,吉晓冬,等. 悬臂式掘进机俯仰角调控系统仿真研究[J]. 工矿自动化,2019,45(5):62-67.ZANG Fuyu,WANG Kaishuo,JI Xiaodong,et al. Simulation research on pitch angle control system of boom roadheader[J]. Industry and Mine Automation,2019,45(5):62-67. [3] 张晓光,杨悦,孙彦景,等. 基于多频连续波相位差测距的掘进机位姿识别方法[J]. 煤炭学报,2020,45(6):2056-2064.ZHANG Xiaoguang,YANG Yue,SUN Yanjing,et al. Pose recognition method of roadheader based on multifrequency continuous-wave phase-difference ranging[J]. Journal of China Coal Society,2020,45(6):2056-2064. [4] ZHANG Minjun,LYU Fuyan,FU Shichen,et al. Study on the pitch angle control of a robotized hydraulic drive roadheader using different control methods[J]. Journal of Mechanical Science and Technology,2018,32(10):4893-4901. doi: 10.1007/s12206-018-0937-7 [5] 张敏骏,吉晓冬,李旭,等. 掘进机姿态调整模型辨识方法与精准控制[J]. 西安交通大学学报,2021,55(6):9-17.ZHANG Minjun,JI Xiaodong,LI Xu,et al. Method of model identification and precise control for tunnel boring machine body posture adjustment[J]. Journal of Xi'an Jiaotong University,2021,55(6):9-17. [6] 王东杰,王鹏江,李悦,等. 掘进机截割臂自适应截割控制策略研究[J]. 中国机械工程,2022,33(20):2492-2501.WANG Dongjie,WANG Pengjiang,LI Yue,et al. Research on adaptive cutting control strategy of roadheader cutting arms[J]. China Mechanical Engineering,2022,33(20):2492-2501. [7] 张旭辉,石硕,杨红强,等. 悬臂式掘进机自主调速截割控制系统[J]. 工矿自动化,2023,49(1):80-89.ZHANG Xuhui,SHI Shuo,YANG Hongqiang,et al. Boom-type roadheader autonomous speed regulation cutting control system[J]. Journal of Mine Automation,2023,49(1):80-89. [8] 刘志森. 悬臂式掘进机截割部恒功率调速控制系统研究[D]. 阜新:辽宁工程技术大学,2012.LIU Zhisen. Research on constant power speed regulation control system for cutting part of cantilever roadheader[D]. Fuxin:Liaoning Technical University,2012. [9] 王苏彧,田劼,吴淼. 纵轴式掘进机截割轨迹规划及边界控制方法研究[J]. 煤炭科学技术,2016,44(4):89-94,118.WANG Suyu,TIAN Jie,WU Miao. Study on cutting trace planning of longitudinal roadheader and boundary control method[J]. Coal Science and Technology,2016,44(4):89-94,118. [10] 王鹏江,沈阳,宗凯,等. 结合LSTM深度学习和模糊推理控制的巷道掘进机智能联合截割策略与方法 [J/OL]. 煤炭学报:1-14[2024-06-21]. https://doi.org/ 10.13225/j.cnki.jccs.2023.1612.WANG Pengjiang,SHEN Yang,ZONG Kai,et al. Intelligent joint cutting strategy and method of roadheader combined with LSTM deep learning and fuzzy reasoning control[J/OL]. Journal of China Coal Society:1-14[2024-06-21]. https://doi.org/10.13225/ j.cnki.jccs.2023.1612. [11] CHELUSZKA P,SOBOTA P,GŁUSZEK G. Studies of behaviour of the automatic control system of roadheader cutting heads movement[J]. MATEC Web of Conferences,2019,252. DOI: 10.1051/matecconf/201925209002. [12] 郭伦锋,郭一楠,蒋康庆,等. 掘进机姿态参数测量及解算方法[J]. 工矿自动化,2021,47(12):46-54.GUO Lunfeng,GUO Yinan,JIANG Kangqing,et al. Measurement and calculation method of attitude parameters of roadheader[J]. Industry and Mine Automation,2021,47(12):46-54. [13] 费烨,孙波,林闯. EBZ160悬臂式掘进机液压系统设计[J]. 液压与气动,2015,39(2):103-106. doi: 10.11832/j.issn.1000-4858.2015.02.026FEI Ye,SUN Bo,LIN Chuang. The design for hydraulic system of EBZ160 cantilever tunneling machine[J]. Chinese Hydraulics & Pneumatics,2015,39(2):103-106. doi: 10.11832/j.issn.1000-4858.2015.02.026 [14] 王志武. 掘进机行走机构液压系统液压冲击的分析与处理[J]. 机床与液压,2013,41(4):108-109. doi: 10.3969/j.issn.1001-3881.2013.04.032WANG Zhiwu. Analysis and treatment of hydraulic shock in hydraulic system of roadheader traveling mechanism[J]. Machine Tool & Hydraulics,2013,41(4):108-109. doi: 10.3969/j.issn.1001-3881.2013.04.032 [15] 陶建峰,刘成良. 全断面岩石隧道掘进机液压技术研究现状[J]. 液压与气动,2015,39(6):1-5,12. doi: 10.11832/j.issn.1000-4858.2015.06.001TAO Jianfeng,LIU Chengliang. Review of technical research for hydraulic system of tunnel boring machine[J]. Chinese Hydraulics & Pneumatics,2015,39(6):1-5,12. doi: 10.11832/j.issn.1000-4858.2015.06.001 [16] 张敏骏. 悬臂式掘进机自主纠偏与位姿控制研究[D]. 北京:中国矿业大学(北京),2019.ZHANG Minjun. Research on autonomous correction and pose control of cantilever tunneling machine[D]. Beijing:China University of Mining & Technology-Beijing,2019. [17] 张建广. 悬臂式掘进机自适应截割控制系统研究[J]. 煤炭科学技术,2016,44(2):148-152.ZHANG Jianguang. Study on adaptive cutting control system of boom-type roadheader[J]. Coal Science and Technology,2016,44(2):148-152. [18] 雷孟宇,张旭辉,杨文娟,等. 煤矿掘进装备视觉位姿检测与控制研究现状与趋势[J]. 煤炭学报,2021,46(增刊2):1135-1148.LEI Mengyu,ZHANG Xuhui,YANG Wenjuan,et al. Research status and trend of visual pose detection and control of coal mine tunneling equipment[J]. Journal of China Coal Society,2021,46(S2):1135-1148. [19] 范子彦,李立君,李宇航,等. 油茶果采摘机阀控液压马达模糊神经网络PID控制[J]. 液压与气动,2021,45(11):76-85. doi: 10.11832/j.issn.1000-4858.2021.11.011FAN Ziyan,LI Lijun,LI Yuhang,et al. Fuzzy neural network PID control of valve-controlled hydraulic motor for camellia fruit picking machine[J]. Chinese Hydraulics & Pneumatics,2021,45(11):76-85. doi: 10.11832/j.issn.1000-4858.2021.11.011 [20] 敖邦乾,姜孝均,董泽芳,等. 基于神经网络−PID控制的水面无人艇控制系统设计[J]. 控制工程,2024,31(7):1178-1184.AO Bangqian,JIANG Xiaojun,DONG Zefang,et al. Design of unmanned surface vehicle control system based on neural network-PID control[J]. Control Engineering of China,2024,31(7):1178-1184. [21] DHIMISH M,HOLMES V,MEHRDADI B,et al. Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection[J]. Renewable Energy,2018,117:257-274. doi: 10.1016/j.renene.2017.10.066