Fractal characteristics of mine fracture structures and their impact on rockburst
-
摘要: 矿井断裂构造是诱发冲击地压的重要地质因素。为研究断裂构造对冲击地压的影响,以峻德井田为工程研究背景,采用地质动力区划法,将井田内的断裂构造按照不同长度等级划分为Ⅰ−Ⅴ级断块,利用分形理论中的盒维法计算了Ⅴ级断块分形维数,分析了断裂整体分形特征和断裂分区分形特征,探究了断裂构造分形维数与构造应力分布状态、冲击地压之间的耦合关系。结果表明:① 断裂整体分形维数与北西向断裂分形维数具有良好的一致性,北西向断裂对峻德井田冲击地压控制作用的程度较高,北东向断裂次之。② 不同走向断裂的分形维数不同,表明不同走向断裂在空间展布上表现出明显的差异性,反映了分形维数与断裂构造复杂程度呈正相关,即分形维数越大,断裂构造空间分布特征越复杂,越容易诱发冲击地压。③ 区域内的构造复杂程度越高,构造应力集中程度越高,煤层冲击地压主要发生在高应力区,表明构造复杂程度与构造应力集中程度一致性较高。研究成果从分形维数角度对断裂构造进行定量分析,为冲击地压危险性预测及防治提供了新思路。Abstract: Fracture structures in mines are critical geological factors in triggering rockbursts. This study investigated the impact of fracture structures on rockburst, focusing on the Junde mining area. Using geological dynamic zoning, the fracture structures in the mining area were classified into grade Ⅰ-Ⅴ fracture blocks based on length. The box-counting method in fractal theory was employed to calculate the fractal dimension of grade Ⅴ fracture blocks. The study analyzed the overall and partitioned fractal characteristics of the fractures and explored the coupling relationship between the fractal dimension of fracture structures, structural stress distribution, and rockburst. The results showed: ① The overall fractal dimension of the fractures was highly consistent with the fractal dimension of the NW-trending fractures, indicating that NW-trending fractures had a more significant influence on rockburst in the Junde mining area than NE-trending fractures. ② The fractal dimensions varied among fractures of different orientations, demonstrating clear spatial distribution differences and a positive correlation between fractal dimension and fracture complexity. This implied that a greater fractal dimension corresponded to a more complex spatial distribution of fracture structures, thereby increasing the likelihood of rockbursts. ③ Higher structural complexity was associated with higher stress concentration, and rockbursts in coal seams primarily occurred in high-stress regions, showing a high level of consistency between structural complexity and stress concentration. This study provides a new perspective for predicting and mitigating rockburst risks by quantitatively analyzing fracture structures through fractal dimensions.
-
Key words:
- fracture structure /
- rockburst pressure /
- fractal characteristics /
- fractal dimension /
- tectonic stress
-
表 1 断裂构造划分
Table 1. Division of fracture structure
断块 断块长度/km Ⅰ级断块 ≤1 000 Ⅱ级断块 ≤500 Ⅲ级断块 ≤200 Ⅳ级断块 ≤50 Ⅴ级断块 ≤10 表 2 峻德井田Ⅴ级断块基本特征
Table 2. Basic characteristics of grade V fault block in Junde Mine Field
断裂 断裂走向/(°) 断裂长度/km 地貌特征 Ⅲ−9 42 135.36 构造阶地 Ⅳ−15 6 14.66 构造阶地 Ⅳ−19 159 11.06 构造阶地 Ⅴ−4 80~90 8.12 构造阶地 Ⅴ−7 121~143 2.29 构造阶地 Ⅴ−9 8~177 3.05 — Ⅴ−10 17 2.39 — Ⅴ−11 0~10 2.70 坡脚 Ⅴ−12 58 6.31 构造阶地 Ⅴ−13 102 1.55 — Ⅴ−14 114~173 1.70 坡脚 Ⅴ−17 54~68 4.30 — Ⅴ−18 40 3.36 构造阶地 Ⅴ−23 58 2.71 构造阶地 Ⅴ−27 18 0.77 坡脚 表 3 峻德井田Ⅴ级断块分形维数计算结果
Table 3. Calculation results of fractal dimension of grade V fault block in Junde Mine Field
断裂类型 r/m N(r) ln r ln N(r) D R2 整体断裂 1000.000 37 6.9078 3.7377 1.1130 0.9954 500.000 106 6.2146 4.7791 250.000 247 5.5215 5.5872 125.000 529 4.8283 6.3404 62.500 1160 4.1352 7.0562 31.250 2345 3.4420 7.7600 15.625 4727 2.7489 8.4610 南北向
断裂1000.000 28 6.9078 3.3322 1.0048 0.9999 500.000 58 6.2146 4.0604 250.000 117 5.5215 4.7622 125.000 230 4.8283 5.4381 62.500 464 4.1352 6.1399 31.250 924 3.4420 6.8287 15.625 1859 2.7489 7.5278 北东向
断裂1000.000 14 6.9078 2.6391 0.9574 0.9990 500.000 24 6.2146 3.1781 250.000 47 5.5215 3.8501 125.000 92 4.8283 4.5218 62.500 180 4.1352 5.1930 31.250 361 3.4420 5.8889 15.625 719 2.7489 6.5779 北西向
断裂1000.000 21 6.9078 3.0445 1.0162 0.9987 500.000 51 6.2146 3.9318 250.000 97 5.5215 4.5747 125.000 196 4.8283 5.2781 62.500 388 4.1352 5.9610 31.250 773 3.4420 6.6503 15.625 1547 2.7489 7.3441 北西西向
断裂1000.000 12 6.9078 2.4849 0.9570 0.9997 500.000 22 6.2146 3.0910 250.000 44 5.5215 3.7842 125.000 83 4.8283 4.4188 62.500 162 4.1352 5.0876 31.250 320 3.4420 5.7683 15.625 637 2.7489 6.4568 表 4 各分区断裂构造分形维数及相关系数
Table 4. Fractal dimension and correlation coefficient of fracture structure in each zone
分区号 D R2 分区号 D R2 4 1.4577 0.9916 24 0.9528 0.9455 5 1.3564 0.9993 26 1.4577 0.9916 6 1.0766 0.9544 27 1.3275 0.9892 7 1.2948 0.9995 28 1.1921 0.9996 8 1.0000 1.0000 29 1.1197 0.9978 10 1.0537 0.9971 30 1.1197 0.9978 11 1.5301 0.9986 31 1.1197 0.9978 12 0.9911 0.9320 32 1.1921 0.9996 14 1.1517 0.9811 33 1.1921 0.9996 15 0.9955 0.9455 34 1.2045 0.9998 16 1.4465 0.9999 35 1.2948 0.9995 17 1.2282 0.9936 36 1.0000 1.0000 19 0.9426 0.9959 37 1.1517 0.9811 21 1.2922 0.9968 38 1.0000 1.0000 22 1.1517 0.9811 39 1.1517 0.9811 23 0.8801 0.9715 40 1.4764 0.9940 -
[1] 齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1-40.QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China:establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1-40. [2] 张宏伟,于斌,霍丙杰,等. 口泉断裂力学特征及其对大同矿区矿井动力现象的影响[J]. 同煤科技,2016(5):1-4,7.ZHANG Hongwei,YU Bin,HUO Bingjie,et al. Mechanics characteristics of Kouquan fault and its influence on mine dynamic phenomenon in Datong mining area[J]. Datong Coal Science and Technology,2016(5):1-4,7. [3] MANDELBROT B. How long is the coast of Britain? statistical self-similarity and fractional dimension[J]. Science,1967,156(3775):636-638. doi: 10.1126/science.156.3775.636 [4] 程一鸣,林雅洁,祁世红,等. 基于分形理论和蒙特卡罗算法的多孔介质渗流性能研究[J/OL]. 南京师范大学学报(工程技术版):1-9[2024-10-30]. http://kns.cnki.net/kcms/detail/32.1684.T.20241023.1015.002.html.CHENG Yiming,LIN Yajie,QI Shihong,et al. Study on the seepage performance of porous media based on fractal theory and Monte Carlo algorithm[J/OL]. Journal of Nanjing Normal University (Engineering and Technology Edition):1-9[2024-10-30]. http://kns.cnki.net/kcms/detail/32.1684.T.20241023.1015.002.html. [5] 陈志鹏,谢宁,王承民,等. 基于分形机理的复杂电力网络脆弱性评估及鲁棒性提升策略研究[J]. 电网技术,2021,45(2):657-665.CHEN Zhipeng,XIE Ning,WANG Chengmin,et al. Vulnerability evaluation and robustness improvement strategy of complex power network based on fractal mechanism[J]. Power System Technology,2021,45(2):657-665. [6] 李雪原. 基于分形理论建立粗糙裂缝模型及其对支撑剂输送影响研究[J]. 化工管理,2024(28):74-77.LI Xueyuan. Establishing a rough crack model based on fractal theory and its influence on proppant delivery[J]. Chemical Enterprise Management,2024(28):74-77. [7] 张永强,张健,薛海军,等. 基于曲率和分形理论的构造复杂程度评价及构造煤预测[J]. 煤炭技术,2024,43(8):125-128.ZHANG Yongqiang,ZHANG Jian,XUE Haijun,et al. Evaluation of structure complexity and prediction of tectonic coal based on curvature and fractal theory[J]. Coal Technology,2024,43(8):125-128. [8] 张元,王红岩,李育,等. 西秦岭夏河−合作地区断裂构造分形结构特征及成矿预测[J]. 矿床地质,2024,43(2):359-372.ZHANG Yuan,WANG Hongyan,LI Yu,et al. Fractal structural characteristics of fault structures and metallogenic prediction in Xiahe-Hezuo region of West Qinling Mountains[J]. Mineral Deposits,2024,43(2):359-372. [9] 陈学华,吕鹏飞,宋卫华. 矿区活动断裂多重分形特征及与动力现象关系[J]. 辽宁工程技术大学学报(自然科学版),2017,36(8):790-795. doi: 10.11956/j.issn.1008-0562.2017.08.002CHEN Xuehua,LYU Pengfei,SONG Weihua. Multi-fractal feature of active fracture in mining area and its relation to dynamic phenomenon[J]. Journal of Liaoning Technical University (Natural Science),2017,36(8):790-795. doi: 10.11956/j.issn.1008-0562.2017.08.002 [10] 刘伟,吴基文,胡儒,等. 矿井构造复杂程度定量评价与涌(突)水耦合分析[J]. 工矿自动化,2019,45(12):17-22.LIU Wei,WU Jiwen,HU Ru,et al. Quantitative evaluation of mine structure complexity and its coupling analysis with water bursting[J]. Industry and Mine Automation,2019,45(12):17-22. [11] 崔中良,刘祥云,周家喜. 川滇黔接壤铅锌矿集区断裂构造分形特征及其地质意义[J]. 世界地质,2021,40(1):75-92. doi: 10.3969/j.issn.1004-5589.2021.01.008CUI Zhongliang,LIU Xiangyun,ZHOU Jiaxi. Fractal characteristics of faults and its geological significance in Sichuan-Yunnan-Guizhou Pb-Zn metallogenic province,China[J]. Global Geology,2021,40(1):75-92. doi: 10.3969/j.issn.1004-5589.2021.01.008 [12] 张宏伟,孟庆男,韩军,等. 地质动力区划在冲击地压矿井中的应用[J]. 辽宁工程技术大学学报(自然科学版),2016,35(5):449-455. doi: 10.11956/j.issn.1008-0562.2016.05.001ZHANG Hongwei,MENG Qingnan,HAN Jun,et al. Application of the geological dynamic division in rock burst coal mine[J]. Journal of Liaoning Technical University (Natural Science),2016,35(5):449-455. doi: 10.11956/j.issn.1008-0562.2016.05.001 [13] 张宏伟,李胜,韩军,等. 地质动力区划及其在冲击地压研究中的应用[J]. 煤炭科学技术,2023,51(1):191-202.ZHANG Hongwei,LI Sheng,HAN Jun,et al. Geo-dynamic division and its application in study of rock burst[J]. Coal Science and Technology,2023,51(1):191-202. [14] 张宏伟. 地质动力区划方法在煤与瓦斯突出区域预测中的应用[J]. 岩石力学与工程学报,2003,22(4):621-624. doi: 10.3321/j.issn:1000-6915.2003.04.022ZHANG Hongwei. Application of geo-dynamic division method in prediction of coal and gas outburst region[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(4):621-624. doi: 10.3321/j.issn:1000-6915.2003.04.022 [15] 徐志斌,谢和平,王继尧. 分维──评价矿井断裂复杂程度的综合性指标[J]. 中国矿业大学学报,1996,25(3):11-15. doi: 10.3321/j.issn:1000-1964.1996.03.001XU Zhibin,XIE Heping,WANG Jiyao. Fractal dimension - a comprehensive index for evaluating the complexity degree of mine fault network[J]. Journal of China University of Mining & Technology,1996,25(3):11-15. doi: 10.3321/j.issn:1000-1964.1996.03.001 [16] MIALL A D. The geology of stratigraphic sequences[M]. 2nd ed. Heidelberg:Springer,2010. [17] 田正军,朱国维. 基于MAPGIS断裂分维值统计分析与应用[J]. 煤炭与化工,2021,44(3):41-43,47.TIAN Zhengjun,ZHU Guowei. Statistical analysis and application of fracture fractal dimension based on MAPGIS[J]. Coal and Chemical Industry,2021,44(3):41-43,47. [18] ZHANG Xing,SANDERSON D J. Fractal structure and deformation of fractured rock masses[M]//KRUHL J H. Fractals and Dynamic Systems in Geoscience. Berlin:Springer-Verlag,1994:37-52. [19] 赵善坤,齐庆新,李云鹏,等. 煤矿深部开采冲击地压应力控制技术理论与实践[J]. 煤炭学报,2020,45(增刊2):626-636.ZHAO Shankun,QI Qingxin,LI Yunpeng,et al. Theory and practice of rock burst stress control technology in deep mining of coal mine[J]. Journal of China Coal Society,2020,45(S2):626-636. [20] 荣海,韩永亮,张宏伟,等. 红庆梁煤矿地应力场特征及巷道稳定性分析[J]. 煤田地质与勘探,2020,48(5):144-151. doi: 10.3969/j.issn.1001-1986.2020.05.018RONG Hai,HAN Yongliang,ZHANG Hongwei,et al. Characteristics of in situ stress field and stability analysis of roadway in Hongqingliang coal mine[J]. Coal Geology & Exploration,2020,48(5):144-151. doi: 10.3969/j.issn.1001-1986.2020.05.018 [21] 张宏伟,荣海,陈建强,等. 基于地质动力区划的近直立特厚煤层冲击地压危险性评价[J]. 煤炭学报,2015,40(12):2755-2762.ZHANG Hongwei,RONG Hai,CHEN Jianqiang,et al. Risk assessment of rockburst based on geo-dynamic division method in suberect and extremely thick coal seam[J]. Journal of China Coal Society,2015,40(12):2755-2762.