留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乌兰木伦煤矿大断面硐室围岩变形破坏规律及控制

陈蓥 杨宏涛 史明哲 鲍世纪 张子凯 孔德瑞

陈蓥,杨宏涛,史明哲,等. 乌兰木伦煤矿大断面硐室围岩变形破坏规律及控制[J]. 工矿自动化,2024,50(8):52-60.  doi: 10.13272/j.issn.1671-251x.2024060090
引用本文: 陈蓥,杨宏涛,史明哲,等. 乌兰木伦煤矿大断面硐室围岩变形破坏规律及控制[J]. 工矿自动化,2024,50(8):52-60.  doi: 10.13272/j.issn.1671-251x.2024060090
CHEN Ying, YANG Hongtao, SHI Mingzhe, et al. Deformation and failure law and control of surrounding rock in the large section chamber of Ulan Mulun Coal Mine[J]. Journal of Mine Automation,2024,50(8):52-60.  doi: 10.13272/j.issn.1671-251x.2024060090
Citation: CHEN Ying, YANG Hongtao, SHI Mingzhe, et al. Deformation and failure law and control of surrounding rock in the large section chamber of Ulan Mulun Coal Mine[J]. Journal of Mine Automation,2024,50(8):52-60.  doi: 10.13272/j.issn.1671-251x.2024060090

乌兰木伦煤矿大断面硐室围岩变形破坏规律及控制

doi: 10.13272/j.issn.1671-251x.2024060090
基金项目: 国家自然科学基金面上项目(51874164)。
详细信息
    作者简介:

    陈蓥(1982—),男,辽宁阜新人,教授,博士,研究方向为矿山压力与岩层控制,E-mail:chenying@lntu.edu.cn

  • 中图分类号: TD325

Deformation and failure law and control of surrounding rock in the large section chamber of Ulan Mulun Coal Mine

  • 摘要: 针对煤矿井下巷道大断面硐室的围岩变形破坏问题,以乌兰木伦煤矿井下分选及充填大断面硐室为研究对象,采用相似模拟实验方法,进行单调递增加载和恒定荷载加载单轴压缩实验,对大断面硐室围岩变形破坏规律进行了研究。结果表明:① 2种加载方式在压密阶段、弹性变形阶段及微破裂稳定发展阶段破坏演化和变形位移趋势相似。② 采用单调递增加载方式的试样裂纹较少但裂纹缝隙较大,试样沿着主裂纹突然发生破断,期间有大量碎屑飞出,试样变形位置主要集中在围岩边界,破坏时释放能量较多,但峰后释放能量持续时间较短。③ 采用恒定荷载加载方式的试样应力保持不变,应变缓慢增加,期间产生大量微小裂纹,试样变形位置主要围绕在硐室周围,破坏时释放能量较少,但峰后释放能量持续时间较长。依据大断面硐室围岩变形破坏规律,提出了锚杆索支护方案:硐室顶部打长锚索,将顶板和上方坚硬岩石连成整体;在硐室煤岩交界处打倾斜锚杆,将煤岩交界面与周围岩体紧密连接。数值模拟结果表明,支护后围岩应力、位移、塑性区均明显减小,围岩稳定性大幅提高,支护效果良好。

     

  • 图  1  岩层柱状图

    Figure  1.  Rock column histogram

    图  2  巷道硐室断面

    Figure  2.  Section of roadway chamber

    图  3  大断面硐室相似模拟模型

    Figure  3.  Similar simulation model of large section chamber

    图  4  不同加载方式下试样破坏演化过程

    Figure  4.  Failure evolution process of samples under different loading modes

    图  5  破裂前阶段试样变形位移云图

    Figure  5.  Deformation and displacement nephogram of sample before crack stage

    图  6  不同加载方式下破裂阶段试样变形位移云图

    Figure  6.  Deformation and displacement nephogram of sample at crack stage under different loading modes

    图  7  不同加载过程中试样声发射能量特征

    Figure  7.  Acoustic emission energy features of samples under different loading processes

    图  8  大断面硐室锚杆索支护方案

    Figure  8.  Anchor bolt and anchor cable support scheme for large section chamber

    图  9  大断面硐室数值模型

    Figure  9.  Numerical model of large section chamber

    图  10  支护前后围岩应力场分布规律

    Figure  10.  Distribution law of stress field of surrounding rock before and after support

    图  11  支护前后围岩位移场分布规律

    Figure  11.  Distribution law of displacement field of surrounding rock before and after support

    图  12  支护前后围岩塑性区分布规律

    Figure  12.  Distribution law of plastic zone of surrounding rock before and after support

    表  1  相似材料配比

    Table  1.   Similar material ratio

    岩性 厚度/m 相似材料质量配比
    (水泥∶砂子∶水)
    目标单轴抗
    压强度/MPa
    实际单轴抗压
    强度/MPa
    顶板砂质泥岩 16.00 3∶1∶1.5 18 17.42
    3−1煤层 4.00 2∶1.2∶1 14 14.49
    底板砂质泥岩 5.00 3∶1∶1 25 25.25
    下载: 导出CSV

    表  2  煤岩体物理力学参数

    Table  2.   Physical and mechanical parameters of coal and rock mass

    岩性 密度/
    (kg·m−3
    弹性模
    量/GPa
    体积模
    量/GPa
    剪切模
    量/GPa
    泊松比 黏聚力
    /MPa
    内摩擦
    角/(°)
    抗拉强
    度/MPa
    顶板砂
    质泥岩
    2 282 7.97 3.41 3.27 0.11 3.58 32.66 0.71
    3−1煤 1 268 4.67 5.99 1.34 0.37 1.98 44.31 0.41
    底板砂
    质泥岩
    2 363 8.35 3.66 3.37 0.12 3.63 41.02 0.84
    下载: 导出CSV

    表  3  锚杆索参数

    Table  3.   Parameters of anchor bolt and anchor cable

    结构单元 弹性模
    量/GPa
    直径/
    mm
    抗拉强
    度/MPa
    水泥浆刚
    度/(N·m−1
    水泥浆粘
    结力/N
    密度/
    (kg·m−3
    锚杆 200 22.0 455 0.9×1010 1.0×105 7 800
    锚索 300 21.4 490 0.9×1010 1.0×105 7 850
    下载: 导出CSV
  • [1] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283-1305.

    XIE Heping. Research review of the state key research development program of China:deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283-1305.
    [2] 张吉雄,屠世浩,曹亦俊,等. 深部煤矿井下智能化分选及就地充填技术研究进展[J]. 采矿与安全工程学报,2020,37(1):1-10,22.

    ZHANG Jixiong,TU Shihao,CAO Yijun,et al. Research progress of technologies for intelligent separation and in-situ backfill in deep coal mines in China[J]. Journal of Mining & Safety Engineering,2020,37(1):1-10,22.
    [3] 张吉雄,张强,巨峰,等. 煤矿“采选充+X”绿色化开采技术体系与工程实践[J]. 煤炭学报,2019,44(1):64-73.

    ZHANG Jixiong,ZHANG Qiang,JU Feng,et al. Practice and technique of green mining with integration of mining,dressing,backfilling and X in coal resources[J]. Journal of China Coal Society,2019,44(1):64-73.
    [4] 刘学生,王新,谭云亮,等. 深部超大断面分选硐室群布置方式优化研究[J]. 煤炭科学技术,2022,50(8):32-39.

    LIU Xuesheng,WANG Xin,TAN Yunliang,et al. Study on layout optimization of deep super-large section sorting chamber group[J]. Coal Science and Technology,2022,50(8):32-39.
    [5] 刘学生,范德源,谭云亮,等. 深部动载作用下超大断面硐室群锚固围岩破坏失稳机制研究[J]. 岩土力学,2021,42(12):3407-3418.

    LIU Xuesheng,FAN Deyuan,TAN Yunliang,et al. Failure and instability mechanism of anchored surrounding rock for deep chamber group with super-large section under dynamic disturbances[J]. Rock and Soil Mechanics,2021,42(12):3407-3418.
    [6] 周煜. 动载扰动下深部大断面硐室围岩稳定控制研究[D]. 徐州:中国矿业大学,2023.

    ZHOU Yu. Study on stability control of surrounding rock of deep large section chamber under dynamic load disturbance[D]. Xuzhou:China University of Mining and Technology,2023.
    [7] 杨书浩,王俊,宁建国,等. 动载扰动下深部大断面硐室围岩“帮−顶”联动失稳机理[J]. 煤炭科学技术,2021,49(10):23-33.

    YANG Shuhao,WANG Jun,NING Jianguo,et al. Mechanism of connected instability of "rib-roof" in deep large section chamber under dynamic disturbance[J]. Coal Science and Technology,2021,49(10):23-33.
    [8] 宋楷晨. 基于时效特性深埋大断面硐室群围岩稳定控制技术研究[D]. 徐州:中国矿业大学,2023.

    SONG Kaichen. Study on stability control technology of surrounding rock of deep-buried large-section chamber group based on time-effect characteristics[D]. Xuzhou:China University of Mining and Technology,2023.
    [9] 刘力源,张乐,纪洪广. 深部地下硐室与应力场轴变关系及其围岩损伤破裂分析[J]. 工程科学学报,2022,44(4):516-525.

    LIU Liyuan,ZHANG Le,JI Hongguang. Mechanism analysis of rock damage and failure based on the relation between deep chamber axial variation and in situ stress fields[J]. Chinese Journal of Engineering,2022,44(4):516-525.
    [10] 杨计先. 井底巷道硐室群破坏机理及综合加固技术研究[J]. 煤炭科学技术,2019,47(4):69-77.

    YANG Jixian. Study on failure mechanism and comprehensive strengthening technology of roadways and chambers group at shaft bottom[J]. Coal Science and Technology,2019,47(4):69-77.
    [11] 王琦,张皓杰,江贝,等. 深部大断面硐室破坏机制与锚注控制方法研究[J]. 采矿与安全工程学报,2020,37(6):1094-1103.

    WANG Qi,ZHANG Haojie,JIANG Bei,et al. Failure mechanism of deep large section chamber and anchor injection control method[J]. Journal of Mining & Safety Engineering,2020,37(6):1094-1103.
    [12] 柴敬,刘泓瑞,张丁丁,等. 覆岩载荷扰动下平硐围岩变形分析及支护优化[J]. 工矿自动化,2023,49(3):13-22.

    CHAI Jing,LIU Hongrui,ZHANG Dingding,et al. Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance[J]. Journal of Mine Automation,2023,49(3):13-22.
    [13] 宋高峰,黄鹏,李鹤鹤,等. 基于能量法的工作面端面冒顶机理及“支架−围岩”耦合关系试验研究[J]. 煤炭科学技术,2024,52(7):11-22.

    SONG Gaofeng,HUANG Peng,LI Hehe,et al. Failure mechanism of tip-to-face roof based on energy method and experimental investigation of support-strata interaction[J]. Coal Science and Technology,2024,52(7):11-22.
    [14] 周俊,赵光明,孟祥瑞,等. 岩体模型双向加载巷道开挖卸荷效应[J]. 煤炭学报,2023,48(9):3384-3392.

    ZHOU Jun,ZHAO Guangming,MENG Xiangrui,et al. Unloading effect of roadway excavation based on simulation method in similar material[J]. Journal of China Coal Society,2023,48(9):3384-3392.
    [15] 赵国贞,程伟,刘超,等. 基于循环加卸载的煤岩体破坏力学行为和能量演化规律研究[J]. 岩石力学与工程学报,2024,43(7):1636-1645.

    ZHAO Guozhen,CHENG Wei,LIU Chao. Failure mechanical behavior and energy evolution of coal and rock under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(7):1636-1645.
    [16] 涂敏,赵庆冲,张向阳,等. 不同加载速率下煤岩动力破坏特征实验研究[J]. 采矿与安全工程学报,2023,40(5):1031-1042.

    TU Min,ZHAO Qingchong,ZHANG Xiangyang. Experimental study on dynamic failure characteristics of coal and rock under different loading rates[J]. Journal of Mining & Safety Engineering,2023,40(5):1031-1042.
    [17] 李明,浦海,陈彦龙,等. 压剪复合载荷下煤岩蠕变力学特性及声发射特征[J]. 采矿与安全工程学报,2024,41(4):801-812.

    LI Ming,PU Hai,CHEN Yanlong,et al. Creep mechanical properties and acoustic emission characteristics of coal and rock under compressive shear combined load[J]. Journal of Mining & Safety Engineering,2024,41(4):801-812.
    [18] 胡千庭,刘荣辉,李全贵,等. 单轴压缩下典型煤岩破坏的声发射特征研究[J]. 地下空间与工程学报,2023,19(6):1769-1781.

    HU Qianting,LIU Ronghui,LI Quangui,et al. Acoustic emission characteristics study of typical coal and rock failure under uniaxial compression[J]. Chinese Journal of Underground Space and Engineering,2023,19(6):1769-1781.
    [19] 冯国瑞,文晓泽,郭军,等. 含水率对煤样声发射特征和碎块分布特征影响的试验研究[J]. 中南大学学报(自然科学版),2021,52(8):2910-2918.

    FENG Guorui,WEN Xiaoze,GUO Jun,et al. Study on influence of moisture content on coal sample AE properties and fragment distribution characteristics[J]. Journal of Central South University (Science and Technology),2021,52(8):2910-2918.
    [20] 陈梁,孟庆彬,戚振豪,等. 深部厚煤层采动巷道失稳特征及锚网索注梯级支护技术[J]. 采矿与安全工程学报,2024,41(3):533-548.

    CHEN Liang,MENG Qingbin,QI Zhenhao,et al. Instability features of mining roadway in deep-thick coal seam and progressive bolt-mesh-cable-grouting support technology[J]. Journal of Mining & Safety Engineering,2024,41(3):533-548.
    [21] 司林坡,王晓卿. 基于数值模拟的煤矿井下超大断面硐室支护优化[J]. 煤炭科学技术,2022,50(3):61-68.

    SI Linpo,WANG Xiaoqing. Support optimization of ultra-large cross-section chamber in underground coal mine based on numerical simulation[J]. Coal Science and Technology,2022,50(3):61-68.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  29
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-08-30
  • 网络出版日期:  2024-08-16

目录

    /

    返回文章
    返回