留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近距离煤层采掘关系对下位巷道围岩变形规律影响研究

张小军 孙佳瑞 马扬

张小军,孙佳瑞,马扬. 近距离煤层采掘关系对下位巷道围岩变形规律影响研究[J]. 工矿自动化,2024,50(8):61-68.  doi: 10.13272/j.issn.1671-251x.2024060079
引用本文: 张小军,孙佳瑞,马扬. 近距离煤层采掘关系对下位巷道围岩变形规律影响研究[J]. 工矿自动化,2024,50(8):61-68.  doi: 10.13272/j.issn.1671-251x.2024060079
ZHANG Xiaojun, SUN Jiarui, MA Yang. Study on the influence of close range coal seam mining relationship on the deformation law of surrounding rock in lower roadway[J]. Journal of Mine Automation,2024,50(8):61-68.  doi: 10.13272/j.issn.1671-251x.2024060079
Citation: ZHANG Xiaojun, SUN Jiarui, MA Yang. Study on the influence of close range coal seam mining relationship on the deformation law of surrounding rock in lower roadway[J]. Journal of Mine Automation,2024,50(8):61-68.  doi: 10.13272/j.issn.1671-251x.2024060079

近距离煤层采掘关系对下位巷道围岩变形规律影响研究

doi: 10.13272/j.issn.1671-251x.2024060079
基金项目: 国家自然科学基金项目(520042008)。
详细信息
    作者简介:

    张小军(1974—),男,山西昔阳人,高级工程师,主要从事矿山压力与岩层控制方面的工作,E-mail:42951733@qq.com

  • 中图分类号: TD322

Study on the influence of close range coal seam mining relationship on the deformation law of surrounding rock in lower roadway

  • 摘要: 近距离煤层上煤层工作面与下位煤层巷道采掘关系发生变化时,巷道围岩变形失稳机理会更加复杂,而目前针对上煤层工作面与下位煤层巷道推进方向不同时巷道受载动态演化规律及失稳特征的研究较少。以陕北能东煤矿近距离煤层为研究对象,采用理论分析、数值模拟与现场实测相结合的方法,对上煤层工作面回采后下位煤层巷道的稳定性进行了研究。理论分析得出,上煤层工作面开采后所产生的底板裂隙深度为22.5 m,未发育至下位煤层巷道。按采掘空间位置关系将回采工作面与巷道分为相向、相交、背向3个状态,数值模拟当巷道与工作面的空间位置关系发生变化时下位煤层巷道围岩的变形情况,结果表明:① 上煤层工作面与下位煤层巷道的采掘关系为相交与背向推进时,巷道围岩应力呈先增后减再增的趋势,在推进距离为90 m时,最大应力为6.5 MPa,应力集中系数为1.49,在推进距离为100~110 m时,巷道围岩应力降低幅度最大,降低了53.2%,在推进距离为150 m时应力最小,为0.95 MPa,之后不断增大,直到恢复至原岩应力。② 巷道围岩位移量在推进距离为100~150 m时增长幅度较大,在150 m时顶板位移量达到最大,为0.036 m,随着巷道越接近边界煤柱,其巷道位移量越小。现场实测结果表明:上煤层工作面过下位煤层巷道时,巷道位移量显著增长,顶板最大位移量为3.41 cm,与数值模拟结果一致;相交推进过程中若地质条件简单可以适当加快推进速度,减小上煤层工作面开采对下位煤层巷道的影响。

     

  • 图  1  工作面与巷道空间位置关系

    Figure  1.  Spatial position relationship between the working face and the roadway

    图  2  工作面顶底板综合柱状图

    Figure  2.  Comprehensive histogram of roof and floor of working face

    图  3  底板破坏力学模型

    Figure  3.  Mechanical model of floor failure

    图  4  数值计算模型

    Figure  4.  Numerical calculation model

    图  5  不同空间位置下采场围岩应力分布规律

    Figure  5.  Stress distribution law of stope surrounding rock at different spatial positions

    图  6  不同空间位置下3−2煤层超前垂直应力分布

    Figure  6.  Distribution of advance abutment pressure in 3-2 coal seam at different spatial positions

    图  7  不同空间位置下采场围岩位移分布规律

    Figure  7.  Displacement distribution law of stope surrounding rock at different spatial positions

    图  8  不同掘进距离下巷道围岩位移分布规律

    Figure  8.  Displacement distribution law of roadway surrounding rock under different excavation progress

    图  9  巷道测点布置

    Figure  9.  Layout of roadway measuring points

    图  10  巷道围岩变形曲线

    Figure  10.  Deformation curves of roadway surrounding rock

    表  1  现场岩体参数

    Table  1.   In-situ rock mass parameters

    参数 参数
    $\varphi_{\mathrm{s}} $/(°) 35.40 M/m 1.30
    H/m 150.00 k 3.96
    γ/(kN·m−3 25.00 Cm/MPa 5.34
    f 0.22 $\varphi_{\mathrm{m}} $/(°) 27.90
    下载: 导出CSV

    表  2  煤岩力学参数

    Table  2.   Mechanical parameters of coal rock

    岩性 密度/
    (kg·m−3
    体积模
    量/GPa
    剪切模
    量/GPa
    泊松比 抗拉强
    度/MPa
    黏聚力/
    MPa
    内摩擦
    角/(°)
    粉砂岩 2420 3.5 2.1 0.21 2.69 6.48 28.4
    4−2 1250 1.6 1.0 0.28 0.7 5.99 24.4
    细砂岩
    夹泥岩
    2350 2.8 1.8 0.22 1.59 5.96 27.9
    3−2 1280 1.3 0.84 0.28 0.73 6.63 20.8
    粉砂岩
    夹泥岩
    2240 2.8 1.8 0.21 1.65 4.06 35.4
    3−1 1220 1.6 1.0 0.29 0.7 5.34 27.9
    泥岩 2370 2.8 1.8 0.23 2.69 6.48 28.4
    2−2 1250 1.6 1.0 0.28 0.7 5.99 24.4
    泥质
    粉砂岩
    2420 3.5 2.1 0.21 2.69 6.48 28.4
    下载: 导出CSV
  • [1] 张百胜,杨双锁,康立勋,等. 极近距离煤层回采巷道合理位置确定方法探讨[J]. 岩石力学与工程学报,2008,27(1):97-101. doi: 10.3321/j.issn:1000-6915.2008.01.015

    ZHANG Baisheng,YANG Shuangsuo,KANG Lixun,et al. Discussion on method for determining reasonable position of roadway for ultra-close multi-seam[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(1):97-101. doi: 10.3321/j.issn:1000-6915.2008.01.015
    [2] 黄庆享,王小军,贺雁鹏,等. 浅埋近距离煤层开采顶板活化结构及支架动载研究[J]. 采矿与安全工程学报,2022,39(5):857-866.

    HUANG Qingxiang,WANG Xiaojun,HE Yanpeng,et al. Activated roof structure and support dynamic load in shallow-buried close coal seam mining[J]. Journal of Mining & Safety Engineering,2022,39(5):857-866.
    [3] ZHU Hengzhong. Ground fissure development regularity and formation mechanism of shallow buried coal seam mining with Karst landform in Jiaozi Coal Mine:a case study[J]. Journal of Mountain Science,2023,20(10):3101-3120. doi: 10.1007/s11629-023-8197-0
    [4] 彭高友,高明忠,吕有厂,等. 深部近距离煤层群采动力学行为探索[J]. 煤炭学报,2019,44(7):1971-1980.

    PENG Gaoyou,GAO Mingzhong,LYU Youchang,et al. Investigation on mining mechanics behavior of deep close distance seam group[J]. Journal of China Coal Society,2019,44(7):1971-1980.
    [5] 张杰,何义峰,王旭,等. 浅埋近距离煤层群重复采动覆岩破坏规律分析研究[J]. 矿业研究与开发,2022,42(2):60-64.

    ZHANG Jie,HE Yifeng,WANG Xu,et al. Analysis and research on overburden failure laws under repeated mining in shallow-buried and close coal seam group[J]. Mining Research and Development,2022,42(2):60-64.
    [6] 张杰,康小杰,白文勇,等. 近距离下位煤层巷道迎采掘进巷道围岩失稳特征与支护设计[J]. 矿业研究与开发,2022,42(4):95-101.

    ZHANG Jie,KANG Xiaojie,BAI Wenyong,et al. Instability characteristics and support design of surrounding rocks of roadway facing mining in close-distance coal seam[J]. Mining Research and Development,2022,42(4):95-101.
    [7] YANG S L,LI Q,YUE H,et al. Study on roof deformation and failure law of close distance coal seams mining based on digital image correlation[J]. Experimental Techniques,2024,48(4). DOI: 10.1007/s40799-024-00722-Z.
    [8] LI Xuping,LIU Yangqing,REN Xiaopeng,et al. Roof breaking characteristics and mining pressure appearance laws in close distance coal seams[J]. Energy Exploration & Exploitation,2023,41(2):728-744.
    [9] SHANG Hefu,NING Jianguo,HU Shanchao. et al. Field and numerical investigations of gateroad system failure under an irregular residual coal pillar in close-distance coal seams[J]. Energy Science & Engineering,2019,7(6):2720-2740.
    [10] WANG Chengshuai,YAO Huimiao,HUANG Yucheng. Stability control of goaf-driven roadway surrounding rock under interchange remaining coal pillar in close distance coal seams[J]. Energy Science & Engineering,2024,12,(6):2553-2567.
    [11] 刘超,赵国贞,王帅. 近距离煤层下位煤层巷道内外错布置及应力分布规律研究[J]. 矿业研究与开发,2022,42(12):63-69.

    LIU Chao,ZHAO Guozhen,WANG Shuai. Study on the internal and external staggered arrangement of roadway in lower coal seam and stress distribution law in close-distance coal seam[J]. Mining Research and Development,2022,42(12):63-69.
    [12] 刘晓明,李铁峥,雷学涛,等. 近距离煤层变层间距开采下位煤层巷道合理位置研究[J]. 煤炭工程,2023,55(7):1-6.

    LIU Xiaoming,LI Tiezheng,LEI Xuetao,et al. Optimum location for roadway in lower seam of contiguous coal seams with variable spacing in Meihuajing Coal Mine[J]. Coal Engineering,2023,55(7):1-6.
    [13] 孟浩. 近距离煤层群下位煤层巷道布置优化研究[J]. 煤炭科学技术,2016,44(12):44-50.

    MENG Hao. Study on layout optimization of seam gateway under contiguous seams[J]. Coal Science and Technology,2016,44(12):44-50.
    [14] 黄庆享,韩金博. 浅埋近距离煤层开采裂隙演化机理研究[J]. 采矿与安全工程学报,2019,36(4):706-711.

    HUANG Qingxiang,HAN Jinbo. Study on fracture evolution mechanism of shallow-buried close coal seam mining[J]. Journal of Mining & Safety Engineering,2019,36(4):706-711.
    [15] 张勇,张春雷,赵甫. 近距离煤层群开采底板不同分区采动裂隙动态演化规律[J]. 煤炭学报,2015,40(4):786-792.

    ZHANG Yong,ZHANG Chunlei,ZHAO Fu. Dynamic evolution rules of mining-induced fractures in different floor area of short-distance coal seams[J]. Journal of China Coal Society,2015,40(4):786-792.
    [16] 程志恒,齐庆新,李宏艳,等. 近距离煤层群叠加开采采动应力−裂隙动态演化特征实验研究[J]. 煤炭学报,2016,41(2):367-375.

    CHENG Zhiheng,QI Qingxin,LI Hongyan,et al. Evolution of the superimposed mining induced stress-fissure field under extracting of close distance coal seam group[J]. Journal of China Coal Society,2016,41(2):367-375.
    [17] 曹金钟,高乐,闫鹏飞,等. 采空区遗留煤柱下方回采巷道失稳特征及控制技术研究[J]. 工矿自动化,2022,48(4):44-52.

    CAO Jinzhong,GAO Le,YAN Pengfei,et al. Research on instability characteristics and control technology of the mining roadway below the remaining coal pillars in the goaf[J]. Journal of Mine Automation,2022,48(4):44-52.
    [18] 赵常辛,李晓旭,石蒙,等. 坚硬顶板切顶卸压技术对巷道围岩变形规律影响[J]. 工矿自动化,2024,50(1):147-154.

    ZHAO Changxin,LI Xiaoxu,SHI Meng,et al. The influence of hard roof cutting and pressure relief technology on the deformation law of surrounding rock in roadways[J]. Journal of Mine Automation,2024,50(1):147-154.
    [19] LI Feng,LIU Hanwu,WANG Chenchen,et al. Stress relief and permeability enhancement with hydraulic fracturing in overlying key strata of deep and soft coal seams[J]. ACS Omega,2023,8(13):12183-12193.
    [20] ZHAO Haifeng,LIU Changsong,XIONG Yuangui. Experimental research on hydraulic fracture propagation in group of thin coal seams[J]. Journal of Natural Gas Science and Engineering,2022,103. DOI: 10.1016/j.jngse.2022.104614.
    [21] 张金才,刘天泉. 论煤层底板采动裂隙带的深度及分布特征[J]. 煤炭学报,1990,15(2):46-55. doi: 10.3321/j.issn:0253-9993.1990.02.002

    ZHANG Jincai,LIU Tianquan. On depth of fissured zone in seam floor resulted from coal extraction and its distribution characteristics[J]. Journal of China Coal Society,1990,15(2):46-55. doi: 10.3321/j.issn:0253-9993.1990.02.002
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  39
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-24
  • 修回日期:  2024-08-18
  • 网络出版日期:  2024-08-12

目录

    /

    返回文章
    返回