留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态自适应旗鱼优化BP神经网络的工作面周期来压预测

姚钰鹏 熊武

姚钰鹏,熊武. 基于动态自适应旗鱼优化BP神经网络的工作面周期来压预测[J]. 工矿自动化,2024,50(8):30-37.  doi: 10.13272/j.issn.1671-251x.2024060060
引用本文: 姚钰鹏,熊武. 基于动态自适应旗鱼优化BP神经网络的工作面周期来压预测[J]. 工矿自动化,2024,50(8):30-37.  doi: 10.13272/j.issn.1671-251x.2024060060
YAO Yupeng, XIONG Wu. Periodic pressure prediction of working face based on dynamic adaptive sailfish optimization BP neural network[J]. Journal of Mine Automation,2024,50(8):30-37.  doi: 10.13272/j.issn.1671-251x.2024060060
Citation: YAO Yupeng, XIONG Wu. Periodic pressure prediction of working face based on dynamic adaptive sailfish optimization BP neural network[J]. Journal of Mine Automation,2024,50(8):30-37.  doi: 10.13272/j.issn.1671-251x.2024060060

基于动态自适应旗鱼优化BP神经网络的工作面周期来压预测

doi: 10.13272/j.issn.1671-251x.2024060060
基金项目: 国家重点研发计划项目(2023YFC2907504)。
详细信息
    作者简介:

    姚钰鹏(1989—),男,河北定州人,助理研究员,硕士,主要从事煤矿智能开采控制技术研究和软件设计工作,E-mail:yaoyp@tdmarco.com

    通讯作者:

    熊武(1998—),男,甘肃陇南人,硕士,主要从事煤炭智能开采和无人控制技术方面的研究工作,E-mail:xiongwu@tdmarco.com

  • 中图分类号: TD326

Periodic pressure prediction of working face based on dynamic adaptive sailfish optimization BP neural network

  • 摘要: 针对现有工作面周期来压预测方法精度不足、泛化性较差和算力要求高等问题,提出了一种基于动态自适应旗鱼优化BP神经网络(DASFO−BP)的工作面周期来压预测模型。通过分析工作面周期来压机理,得到与来压相关的影响因素,通过皮尔逊相关系数确定对来压具有显著影响的因素(推进速度、直接顶厚度、基本顶厚度、采高、煤层倾角和倾向长度)作为预测模型输入,并以下次来压强度和来压步距作为预测模型输出。针对旗鱼优化(SFO)算法鲁棒性不足的问题,提出了动态自适应优化策略对SFO算法进行改进,即在优化前期利用SFO达到快速收敛的目的,中期则借助秃鹰搜索(BES)跳出局部最优,后期发挥粒子群优化(PSO)深度搜索的优势来提高解的精度。通过改进后的动态自适应旗鱼优化(DASFO)算法对BP神经网络的超参数进行训练,构建了基于DASFO−BP的来压预测模型。实验结果表明:DASFO算法在单峰和多峰测试函数上均能实现快速收敛;与BP,SFO−BP和NCPSO−BP相比,DASFO−BP对周期来压强度和步距的预测值与真实值更为接近,具有更高的精度,拟合能力和泛化能力强,能够准确预测下一周期来压分布情况。

     

  • 图  1  基本顶垮落受力结构

    Figure  1.  Basic roof breaking stress structure

    图  2  基于DASFO−BP的工作面周期来压预测模型结构

    Figure  2.  Structure of periodic pressure prediction model of working face based on dynamic adaptive sailfish optimization(DASFO)-BP

    图  3  不同算法损失曲线

    Figure  3.  Loss curves of different algorithms

    图  4  不同模型在测试集上的预测结果

    Figure  4.  Prediction results of different models on the test set

    图  5  下次最强来压区域预测结果

    Figure  5.  Prediction results of next strongest pressure area

    图  6  来压期间支架压力变化情况

    Figure  6.  Support pressure changes during pressure

    表  1  周期来压与影响因素相关性分析结果

    Table  1.   Analysis results of correlation between periodic pressure and influencing factors

    参数皮尔逊相关系数
    直接顶厚度基本顶厚度采高煤层厚度煤层倾角倾向长度推进速度
    周期来压步距0.320.410.550.130.480.370.58
    周期来压强度0.520.560.410.070.350.280.61
    下载: 导出CSV

    表  2  不同模型评价指标结果

    Table  2.   Evaluation index results of different models

    模型 周期来压强度 周期来压步距
    RMSE MAE R2 RMSE MAE R2
    BP 0.0116 0.0598 0.6441 0.0076 0.0374 0.7753
    SFO−BP 0.0136 0.0854 0.4676 0.0174 0.0568 0.5462
    NCPSO−BP 0.0026 0.0386 0.8962 0.0037 0.0387 0.6732
    DASFO−BP 0.0023 0.0317 0.9092 0.0030 0.0254 0.9891
    下载: 导出CSV

    表  3  不同模型的周期来压预测结果

    Table  3.   Periodic pressure prediction results of different models

    日期/(年−月−日) BP SFO−BP NCPSO−BP DASFO−BP 真实来压
    强度/MPa
    真实来压
    步距/m
    预测来压
    强度/MPa
    预测来压
    步距/m
    预测来压
    强度/MPa
    预测来压
    步距/m
    预测来压
    强度/MPa
    预测来压
    步距/m
    预测来压
    强度/MPa
    预测来压
    步距/m
    2023−12−09 45.46 22.64 46.88 25.39 45.24 25.72 46.25 24.25 46.99 25.59
    2023−12−15 28.32 21.44 26.72 21.55 26.62 18.69 28.20 18.78 28.51 19.96
    2023−12−19 29.35 20.56 32.62 18.83 29.52 20.46 31.15 20.52 30.53 20.17
    2023−12−24 32.80 20.30 32.25 18.88 32.76 19.33 32.27 19.47 32.21 21.29
    2023−12−30 32.55 26.03 30.31 26.09 30.28 26.31 31.78 29.10 31.52 28.43
    2024−01−03 29.90 18.51 33.52 18.03 32.53 17.99 31.11 18.24 30.60 16.78
    2024−01−07 28.35 26.70 29.35 25.79 30.04 22.25 29.71 26.78 29.91 25.06
    2024−01−14 48.78 21.43 45.92 17.85 46.97 19.89 47.11 20.77 47.78 20.34
    2024−01−20 43.91 24.00 42.84 23.72 41.38 22.69 43.27 25.23 42.35 23.56
    2024−01−26 30.96 27.16 32.96 25.19 32.69 25.99 32.07 28.10 32.13 27.88
    均方误差 1.2905 2.5368 2.2279 3.1205 1.5147 2.2162 0.2698 1.5184
    下载: 导出CSV
  • [1] 段柱平. 基于煤矿采煤工作面顶板事故原因及其防治措施探析[J]. 当代化工研究,2023(13):87-89.

    DUAN Zhuping. Analysis on the causes and prevention measures of roof accidents in coal mining faces[J]. Modern Chemical Research,2023(13):87-89.
    [2] TAN Tingjiang,YANG Zhen,CHANG Feng,et al. Prediction of the first weighting from the working face roof in a coal mine based on a GA-BP neural network[J]. Applied Sciences,2019,9(19). DOI: 10.3390/app9194159.
    [3] 李泽西. 基于可变时序移位Transformer−LSTM的集成学习矿压预测方法[J]. 工矿自动化,2023,49(7):92-98.

    LI Zexi. Ensemble learning mine pressure prediction method based on variable time series shift Transformer-LSTM[J]. Journal of Mine Automation,2023,49(7):92-98.
    [4] 贾永杰. 野青灰岩坚硬顶板工作面来压步距与强度预测分析[J]. 煤炭与化工,2022,45(12):1-7,11.

    JIA Yongjie. Prediction and analysis of pressure step and strength for Yeqing limestone hard roof[J]. Coal and Chemical Industry,2022,45(12):1-7,11.
    [5] 冯银辉,宋阳,李务晋,等. 基于支架数据优化的工作面矿压预测模型研究[J]. 煤炭工程,2023,55(6):101-107.

    FENG Yinhui,SONG Yang,LI Wujin,et al. Mine pressure prediction model for fully mechanized working face based on data optimization of hydraulic support[J]. Coal Engineering,2023,55(6):101-107.
    [6] 路建军,周宏范,冯明,等. 综采工作面来压步距预测及修正方法研究[J]. 煤炭工程,2022,54(11):118-123.

    LU Jianjun,ZHOU Hongfan,FENG Ming,et al. Prediction and correction method of weighting interval for fully mechanized mining face[J]. Coal Engineering,2022,54(11):118-123.
    [7] 赵毅鑫,杨志良,马斌杰,等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65.

    ZHAO Yixin,YANG Zhiliang,MA Binjie,et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65.
    [8] 冀汶莉,田忠,张丁丁,等. 基于遗传算法−深度神经网络的分布式光纤监测工作面矿压预测[J]. 科学技术与工程,2022,22(24):10485-10492. doi: 10.3969/j.issn.1671-1815.2022.24.016

    JI Wenli,TIAN Zhong,ZHANG Dingding,et al. Mine pressure prediction by genetic algorithm-deep neural network based on distributed optical fiber monitoring[J]. Science Technology and Engineering,2022,22(24):10485-10492. doi: 10.3969/j.issn.1671-1815.2022.24.016
    [9] 吕文玉,王海金,伍永平,等. 基于PSO−SVR预测模型的综采工作面周期来压研究[J]. 煤炭工程,2022,54(4):86-91.

    LYU Wenyu,WANG Haijin,WU Yongping,et al. PSO-SVR prediction model of periodic weighting in fully mechanized working face[J]. Coal Engineering,2022,54(4):86-91.
    [10] 高阳. 基于长短时记忆神经网络的工作面矿压预测方法研究[D]. 焦作:河南理工大学,2022.

    GAO Yang. Study on prediction method of mine pressure in working face based on long-short-term memory neural network[D]. Jiaozuo:Henan Polytechnic University,2022.
    [11] LIU Yaping,DONG Lihong,YE Ou. Mine pressure prediction model of fully mechanized mining face based on improved transformer[C]. IEEE International Conference on Signal Processing,Communications and Computing,Xi'an,2022:1-5.
    [12] RUMELHART D E,HINTON G E,WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature,1986,323:533-536. doi: 10.1038/323533a0
    [13] 张琦. 综放工作面周期来压步距和来压强度的定量预测方法研究[J]. 煤炭与化工,2017,40(2):37-39,42.

    ZHANG Qi. Study on quantitative prediction methods of ground pressure strength and periodic weighting length in fully mechanized caving face[J]. Coal and Chemical Industry,2017,40(2):37-39,42.
    [14] 王陈真. 孤岛综放工作面覆岩结构分析及矿压特征研究[J]. 煤矿现代化,2019(5):26-29. doi: 10.3969/j.issn.1009-0797.2019.05.009

    WANG Chenzhen. The analysis of overburden rock structure and the study of ore pressure characteristics in the fully mechanized caving face of isolated island[J]. Coal Mine Modernization,2019(5):26-29. doi: 10.3969/j.issn.1009-0797.2019.05.009
    [15] 李云鹏,赵善坤,李杨,等. 复杂坚硬岩层条件下特厚煤层综放开采矿压分级预测[J]. 煤炭学报,2021,46(增刊1):38-48.

    LI Yunpeng,ZHAO Shankun,LI Yang,et al. Prediction on weighting classification of fully-mechanized caving mining under extremely thick coal seam[J]. Journal of China Coal Society,2021,46(S1):38-48.
    [16] 巩师鑫,任怀伟,杜毅博,等. 基于MRDA−FLPEM集成算法的综采工作面矿压迁移预测[J]. 煤炭学报,2021,46(增刊1):529-538.

    GONG Shixin,REN Huaiwei,DU Yibo,et al. Transfer prediction of underground pressure for fully mechanized mining face based on MRDA-FLPEM integrated algorithm[J]. Journal of China Coal Society,2021,46(S1):529-538.
    [17] SHADRAVAN S,NAJI H R,BARDSIRI V K. The sailfish optimizer:a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems[J]. Engineering Applications of Artificial Intelligence,2019,80:20-34. doi: 10.1016/j.engappai.2019.01.001
    [18] 黄鹤,熊武,吴琨,等. 基于记忆传递旗鱼优化的K均值混合迭代聚类[J]. 上海交通大学学报,2022,56(12):1638-1648.

    HUANG He,XIONG Wu,WU Kun,et al. K-means hybrid iterative clustering based on memory transfer sailfish optimization[J]. Journal of Shanghai Jiao Tong University,2022,56(12):1638-1648.
    [19] 段洁,伍瑞泽,尤敬尧,等. 基于改进秃鹰算法优化LSSVM的变压器故障诊断[J]. 红水河,2024,43(1):96-101. doi: 10.3969/j.issn.1001-408X.2024.01.018

    DUAN Jie,WU Ruize,YOU Jingyao,et al. Transformer fault diagnosis based on improved vulture algorithm to optimize LSSVM[J]. Hongshui River,2024,43(1):96-101. doi: 10.3969/j.issn.1001-408X.2024.01.018
    [20] 田劼,李阳,张磊,等. 基于PSO−BP神经网络的临时支架支撑力自适应控制[J]. 工矿自动化,2023,49(7):67-74.

    TIAN Jie,LI Yang,ZHANG Lei,et al. Adaptive control of temporary support force based on PSO-BP neural network[J]. Journal of Mine Automation,2023,49(7):67-74.
    [21] 顾丽丽,刘勇,甄佳奇. 基于改进粒子群算法优化BP神经网络的甜菜产量预测方法[J]. 新疆大学学报(自然科学版),2021,38(2):191-196.

    GU Lili,LIU Yong,ZHEN Jiaqi. Prediction of beet yield based on BP neural network optimized by improved particle swarm algorithm[J]. Journal of Xinjiang University(Natural Science Edition),2021,38(2):191-196.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  30
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-18
  • 修回日期:  2024-08-29
  • 网络出版日期:  2024-08-16

目录

    /

    返回文章
    返回