留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

综采支架液压系统动态特性研究及改进设计

郭新伟

郭新伟. 综采支架液压系统动态特性研究及改进设计[J]. 工矿自动化,2024,50(8):20-29.  doi: 10.13272/j.issn.1671-251x.2024060046
引用本文: 郭新伟. 综采支架液压系统动态特性研究及改进设计[J]. 工矿自动化,2024,50(8):20-29.  doi: 10.13272/j.issn.1671-251x.2024060046
GUO Xinwei. Research on dynamic features of hydraulic system for fully mechanized mining support and its improvement design[J]. Journal of Mine Automation,2024,50(8):20-29.  doi: 10.13272/j.issn.1671-251x.2024060046
Citation: GUO Xinwei. Research on dynamic features of hydraulic system for fully mechanized mining support and its improvement design[J]. Journal of Mine Automation,2024,50(8):20-29.  doi: 10.13272/j.issn.1671-251x.2024060046

综采支架液压系统动态特性研究及改进设计

doi: 10.13272/j.issn.1671-251x.2024060046
基金项目: 国家重点研发计划资助项目(2023YFC2907504);中国煤炭科工集团科技创新基金重点资助项目(2024-TD-MS012)。
详细信息
    作者简介:

    郭新伟(1981— ),男,安徽界首人,助理研究员,硕士,现主要从事煤矿智能开采工作,E-mail:guoxw@tdmarco.com

  • 中图分类号: TD355.4/67

Research on dynamic features of hydraulic system for fully mechanized mining support and its improvement design

  • 摘要: 综采工作面液压支架工作中常存在支架初撑力不足、移架速度慢等问题,目前大多基于支架液压系统的稳态运行规律,采用增大泵站流量、降低压力损失等方案来解决,对液压系统动态特性的研究较少。建立了综采支架液压系统动力方程,理论分析了支架初撑力和移架速度相关的液压系统动态特性和乳化液管路系统的液压冲击特性,得出立柱或千斤顶的近似空载运行和长距离管路液压冲击是造成支架液压系统压力大幅下降波动的主要原因。揭示了支架液压系统液压冲击的发生机理为电液换向阀突然启闭和立柱触顶加压。通过现场实测数据和AMESim仿真验证了理论分析的正确性。提出了综采支架液压系统改进方案,在支架上设置多个蓄能器,新增液控单向阀和电液换向阀控制液压系统蓄能器在不同移架阶段的充放液方式,利用蓄能器的瞬时大流量特性和长距离管路液压冲击压力峰值产生的超压作用来提升支架初撑力。仿真结果表明,改进系统能够有效提高液压支架的初撑力和移架速度。

     

  • 图  1  单台支架液压系统结构

    1—乳化液泵站;2—蓄能器;3—双向锁;4—推移千斤顶安全阀;5—推移千斤顶;6—左立柱; 7—立柱安全阀;8—右立柱; 9—液控单向阀;10—除推移千斤顶之外的其他千斤顶及其控制阀;11—降柱控制阀;12—升柱控制阀;13—推溜控制阀;14—拉架控制阀;15—电液换向阀。

    Figure  1.  Hydraulic system structure of single support

    图  2  理想情况下管路液压冲击波形

    Figure  2.  Hydraulic impact waveform of pipeline under ideal condition

    图  3  实际情况下管路液压冲击波形

    Figure  3.  Hydraulic impact waveform of pipeline under actual condition

    图  4  支架附近管路压力实测曲线

    Figure  4.  Measured curves of pipeline pressure near supports

    图  5  支架液压系统仿真模型

    Figure  5.  Simulation model of hydraulic system of support

    图  6  立柱位移和速度曲线

    Figure  6.  Column displacement and velocity curves

    图  7  支架动态压力曲线

    Figure  7.  Dynamic pressure curves of support

    图  8  升柱过程中支架压力曲线

    Figure  8.  Pressure curves of support in column lifting process

    图  9  立柱下腔流量曲线

    Figure  9.  Flow rate curve at the bottom of column

    图  10  综采支架液压系统改进方案

    1—乳化液泵站;2—新增电液换向阀;3—新增液控单向阀;4—泵站蓄能器;5—新增支架蓄能器;6—单架液压系统。

    Figure  10.  Improved scheme of hydraulic system for fully mechanized mining support

    图  11  改进的综采支架液压系统仿真模型

    Figure  11.  Simulation model of improved hydraulic system for fully mechanized mining support

    图  12  系统改进后立柱位移和速度曲线

    Figure  12.  Displacement and velocity curves of column of the improved system

    图  13  系统改进后支架动态压力曲线

    Figure  13.  Dynamic support pressure curves of the improved system

    图  14  系统改进后立柱下腔流量曲线

    Figure  14.  Flow rate curves at the bottom of the column of the improved system

    表  1  支架附近管路压力实测数据峰谷值及对应时间

    Table  1.   The peak and valley value of measured data of pipeline pressure near supports and corresponding time

    6号支架 46号支架 86号支架
    时间 压力/MPa 时间 压力/MPa 时间 压力/MPa
    19:06:27 30.1 19:06:27 28.0 19:06:23 28.2
    19:06:35 18.6 19:06:35 16.4 19:06:35 23.6
    19:06:37 26.2 19:06:38 28.5 19:06:38 28.5
    19:06:57 17.9 19:06:44 21.9 19:06:44 24.0
    19:07:00 27.0 19:06:48 28.9 19:06:48 28.0
    19:07:09 22.0 19:06:55 13.3 19:06:55 20.9
    19:07:11 25.3 19:07:00 29.1 19:07:00 29.5
    19:07:15 14.9 19:07:14 11.7 19:07:08 25.0
    19:07:19 29.8 19:07:18 27.6 19:07:11 28.2
    19:07:25 22.5 19:07:25 23.9 19:07:15 19.1
    19:07:27 30.2 19:07:27 28.2 19:07:19 27.8
    19:07:35 20.1 19:07:34 15.5 19:07:25
    19:07:37 27.6 19:07:38 26.2 19:07:27 27.8
    19:07:46 23.1 19:07:57 13.8 19:07:35 24.7
    19:07:51 26.8 19:08:11 28.9 19:07:37 27.8
    19:07:57 13.2 19:08:17 24.2 19:07:35 21.0
    19:08:11 29.5 19:08:30 27.3 19:07:38 29.2
    19:08:34 25.0 19:08:33 12.0 19:07:56 21.2
    19:08:37 29.0 19:08:37 28.9 19:08:03 28.3
    19:08:51 22.3 19:09:03 13.1 19:08:15 24.7
    下载: 导出CSV

    表  2  支架液压系统仿真参数

    Table  2.   Simulation parameters of hydraulic system of support

    部件名称 仿真参数
    双立柱 活塞$\phi $300 mm,活塞杆$\phi $280 mm,行程3 m
    推移千斤顶 活塞$\phi $200 mm,活塞杆$\phi $140 mm,行程1 m
    液控单向阀 压力31.5 MPa,压降6 MPa,最大阀口开度时流量600 L/min
    电液换向阀 压力31.5 MPa,压降6.6 MPa,最大阀口开度时流
    量500 L/min
    乳化液泵站 压力31.5 MPa,流量2×400 L/min
    泵站蓄能器 容积100 L,充气压力12 MPa
    主进液管 通径DN50
    主回液管 通径DN63
    高压进液管 通径DN25
    其他回液管 通径DN32
    下载: 导出CSV

    表  3  综采支架液压系统改进设计参数

    Table  3.   Improved design parameters of hydraulic system for fully mechanized mining support

    名称 参数
    乳化液泵站 压力31.5 MPa,流量400 L/min
    泵站蓄能器 容积100 L,充气压力12 MPa
    支架蓄能器 容积60 L,充气压力12 MPa
    主进液管 通径DN38
    下载: 导出CSV
  • [1] 王国法,庞义辉. 液压支架与围岩耦合关系及应用[J]. 煤炭学报,2015,40(1):30-34.

    WANG Guofa,PANG Yihui. Relationship between hydraulic support and surrounding rock coupling and its application[J]. Journal of China Coal Society,2015,40(1):30-34.
    [2] 王国法. 工作面支护与液压支架技术理论体系[J]. 煤炭学报,2014,39(8):1593-1601.

    WANG Guofa. Theory system of working face support system and hydraulic roof support technology[J]. Journal of China Coal Society,2014,39(8):1593-1601.
    [3] 徐亚军,王国法. 液压支架群组支护原理与承载特性[J]. 岩石力学与工程学报,2017,36(增刊1):3367-3373.

    XU Yajun,WANG Guofa. Supporting principle and bearing characteristics of hydraulic powered roof support groups[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(S1):3367-3373.
    [4] 李恒,康天合,李晓坡,等. 大采高综采支架初撑力对煤壁稳定性的影响研究[J]. 煤炭科学技术,2016,44(9):67-71,92.

    LI Heng,KANG Tianhe,LI Xiaopo,et al. Study on setting load of powered support in high cutting fully-mechanized coal mining face affected to coal wall stability[J]. Coal Science and Technology,2016,44(9):67-71,92.
    [5] 阎建华. 综采工作面支架初撑力与围岩相互作用关系分析[J]. 煤炭科学技术,2014,42(4):12-15.

    YAN Jianhua. Analysis on interaction relationship between initial support load of powered support and surrounding rock in fully-mechanized coal mining face[J]. Coal Science and Technology,2014,42(4):12-15.
    [6] 钱鸣高,石平五,许家林. 矿山压力与岩层控制[M]. 北京:煤炭工业出版社,2003:84-90.

    QIAN Minggao,SHI Pingwu,XU Jialin. Ground pressure and strata control[M]. Beijing:China Coal Industry Publishing House,2003:84-90.
    [7] 史帆. 综放液压支架选型及工作阻力确定[J]. 机械管理开发,2022,37(10):112-113.

    SHI Fan. Selection of hydraulic supports for heaving and determination of working resistance[J]. Mechanical Management and Development,2022,37(10):112-113.
    [8] 刘前进,徐刚,卢振龙,等. 液压支架工况综合评价与预警模型研究及应用[J]. 煤炭科学技术,2022,50(10):198-206.

    LIU Qianjin,XU Gang,LU Zhenlong,et al. Research and application of comprehensive evaluation and early warning model of hydraulic support working condition based on working resistance analysis[J]. Coal Science and Technology,2022,50(10):198-206.
    [9] 徐刚,张春会,蔺星宇,等. 基于分区支承力学模型的综放工作面顶板矿压演化与压架预测[J]. 煤炭学报,2022,47(10):3622-3633.

    XU Gang,ZHANG Chunhui,LIN Xingyu,et al. Predicting ground pressure evolution and support crushing of fully mechanized top coal caving face based on zoning support mechanical model[J]. Journal of China Coal Society,2022,47(10):3622-3633.
    [10] 李然. 矿用高压大流量乳化液泵站应用现状及发展趋势[J]. 煤炭科学技术,2015,43(7):93-96.

    LI Ran. Current status of application and development trend of mining high-pressure and large-flow-rate emulsion pump station[J]. Coal Science and Technology,2015,43(7):93-96.
    [11] 胡红伟. 大采高工作面液压支架初撑力实测及分析[J]. 能源与节能,2015(7):99-101.

    HU Hongwei. On the practical first support force measurement and analysis of hydraulic support in mining face with large height[J]. Energy and Energy Conservation,2015(7):99-101.
    [12] 张德生,谭震,朱信龙,等. 分布式供液模式下液压支架快速推移控制技术研究[J]. 矿山机械,2022,50(12):1-6. doi: 10.3969/j.issn.1001-3954.2022.12.001

    ZHANG Desheng,TAN Zhen,ZHU Xinlong,et al. Research on control technology for rapid movement of hydraulic support in distributed liquid supply mode[J]. Mining & Processing Equipment,2022,50(12):1-6. doi: 10.3969/j.issn.1001-3954.2022.12.001
    [13] 李宇琛,吴娟,郭凯宇,等. 综采面不同供液方式的压力损失分析[J]. 机床与液压,2022,50(12):131-136. doi: 10.3969/j.issn.1001-3881.2022.12.025

    LI Yuchen,WU Juan,GUO Kaiyu,et al. Analysis on pressure loss of different liquid supply modes in fully mechanized face[J]. Machine Tool & Hydraulics,2022,50(12):131-136. doi: 10.3969/j.issn.1001-3881.2022.12.025
    [14] 杨阳,沈宏明,赵忠辉. 蓄能器在液压支架立柱动载过载试验系统中应用的研究[J]. 煤矿机械,2015,36(3):206-207.

    YANG Yang,SHEN Hongming,ZHAO Zhonghui. Research of accumulator in hydraulic support column impact testing system[J]. Coal Mine Machinery,2015,36(3):206-207.
    [15] 车鹏,吴勇,赵玉贝,等. 液压支架供液方式压力损失分析[J]. 液压气动与密封,2013,33(7):69-72. doi: 10.3969/j.issn.1008-0813.2013.07.025

    CHE Peng,WU Yong,ZHAO Yubei,et al. Pressure loss analysis of hydraulic support different feed liquid manner[J]. Hydraulics Pneumatics & Seals,2013,33(7):69-72. doi: 10.3969/j.issn.1008-0813.2013.07.025
    [16] 方中喜. 液压支架立柱自动增压阀的仿真与试验[J]. 煤矿机械,2022,43(7):45-47.

    FANG Zhongxi. Simulation and test of automatic pressurization valve for hydraulic support column[J]. Coal Mine Machinery,2022,43(7):45-47.
    [17] 曹连民,郭震,仲崇涛,等. 液压支架初撑力手动增压装置设计与应用[J]. 工矿自动化,2017,43(6):10-14.

    CAO Lianmin,GUO Zhen,ZHONG Chongtao,et al. Design and application of manual pressurization device for initial support force of hydraulic support[J]. Industry and Mine Automation,2017,43(6):10-14.
    [18] 常宝瑞. 液压支架液压系统的优化设计[J]. 机电工程技术,2019,48(12):199-201. doi: 10.3969/j.issn.1009-9492.2019.12.065

    CHANG Baorui. Optimum design of hydraulic system of hydraulic support[J]. Mechanical & Electrical Engineering Technology,2019,48(12):199-201. doi: 10.3969/j.issn.1009-9492.2019.12.065
    [19] 王成宾,权龙. 大惯量负载液压冲击的主动变阻尼抑制方法[J]. 机械工程学报,2014,50(8):182-188. doi: 10.3901/JME.2014.08.182

    WANG Chengbin,QUAN Long. Methods of restrain the hydraulic impact with active adjusting the variable damping in system with large inertia load[J]. Journal of Mechanical Engineering,2014,50(8):182-188. doi: 10.3901/JME.2014.08.182
    [20] 陆春月,寇子明,吴娟,等. 液压波动激励下的充液管道动力学特性[J]. 华中科技大学学报(自然科学版),2013,41(5):17-22.

    LU Chunyue,KOU Ziming,WU Juan,et al. Dynamic characteristics of pipes conveying fluid excited by hydraulic fluctuation[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2013,41(5):17-22.
    [21] 刘占,孟兰蔚. 流体力学[M]. 北京:科学出版社,2017:130-131.

    LIU Zhan,MENG Lanwei. Hydrodynamics[M]. Beijing:Science Press,2017:130-131.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  44
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-13
  • 修回日期:  2024-08-13
  • 网络出版日期:  2024-08-22

目录

    /

    返回文章
    返回