留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光滑粒子动力学顶煤放落与输送过程仿真研究

刘波 张强 刘洋 董祥伟

刘波,张强,刘洋,等. 基于光滑粒子动力学顶煤放落与输送过程仿真研究[J]. 工矿自动化,2024,50(9):47-58.  doi: 10.13272/j.issn.1671-251x.2024060003
引用本文: 刘波,张强,刘洋,等. 基于光滑粒子动力学顶煤放落与输送过程仿真研究[J]. 工矿自动化,2024,50(9):47-58.  doi: 10.13272/j.issn.1671-251x.2024060003
LIU Bo, ZHANG Qiang, LIU Yang, et al. Simulation study of top coal caving and conveying process based on smoothed particle hydrodynamics[J]. Journal of Mine Automation,2024,50(9):47-58.  doi: 10.13272/j.issn.1671-251x.2024060003
Citation: LIU Bo, ZHANG Qiang, LIU Yang, et al. Simulation study of top coal caving and conveying process based on smoothed particle hydrodynamics[J]. Journal of Mine Automation,2024,50(9):47-58.  doi: 10.13272/j.issn.1671-251x.2024060003

基于光滑粒子动力学顶煤放落与输送过程仿真研究

doi: 10.13272/j.issn.1671-251x.2024060003
基金项目: 国家自然科学基金重点资助项目 (52234005)。
详细信息
    作者简介:

    刘波(1984—),男,内蒙古五原人,高级工程师,硕士,主要从事煤矿智能化建设工作,E-mail:10771334@qq.com。通信作者:董祥伟(1986—),男,山东潍坊人,讲师,博士,研究方向为多场耦合破岩机理、无网格模拟方法等,E-mail: dongxw139@163.com

  • 中图分类号: TD821

Simulation study of top coal caving and conveying process based on smoothed particle hydrodynamics

  • 摘要: 目前针对综放开采中顶煤放出规律的数值模拟研究中,对于顶煤运动的连续−非连续性问题需复杂的耦合算法,必须解决煤岩界面信息精确交互问题,且忽略了刮板输送机输送过程。针对该问题,基于光滑粒子动力学构建了无网格数值计算模型,通过建立连续介质力学控制方程的光滑粒子动力学离散方程,并引入弹塑性土体本构模型和Drucker−Prager屈服准则,实现了顶煤坍塌、运移、放出过程的动态模拟。考虑采场实际放煤和输煤过程,构建了刮板输送机模型,模拟沿工作面水平方向顶煤放出和底煤输送过程,得到不同刮板输送机运行速度(0~1.5 m/s)下的煤岩界面和煤流速度变化规律。仿真结果表明:弹塑性土体本构模型可有效模拟颗粒的流动行为,通过设定摩擦角、弹性模量等材料参数,避免了传统离散元法模型的参数不定问题;煤流速度稳定后,放煤口附近的顶煤应力分布呈 “双峰”形态;刮板输送机运行速度对放煤时间影响较大,但对终止的煤岩界面和放出体形状影响较小;多支架同时放煤需考虑刮板输送机的输送能力,不同支架之间的底煤输送干涉可能导致放煤口的堵塞效应; “见矸关门”准则导致不同放煤口放煤量存在差异,40个放煤口顶煤放出量的标准差(7.52 m2)高于自动放煤的标准差(1.93 m2)。

     

  • 图  1  SPH计算域离散化及粒子支持域

    Figure  1.  Smoothed particle hydrodynamics (SPH) computational domain discretisation and particle support domains

    图  2  D−P屈服准则和应力调整

    Figure  2.  Drucker-Prager (D−P) criterion and stress adjustment

    图  3  铝颗粒床在重力作用下坍塌过程的模拟和实验结果对比

    Figure  3.  Comparison between simulation and experiment results of aluminum particle bed collapse process under influence of gravity

    图  4  单个放煤口放煤SPH模型

    Figure  4.  SPH model of top coal caving with a single coal drawing outlet

    图  5  放煤终止时的煤岩界面及放出体形状

    Figure  5.  Coal-rock interface and shape of released body at the end of coal caving

    图  6  不同放煤时刻标记颗粒的位置

    Figure  6.  The positions of marked particles at different coal drawing times

    图  7  顶煤的运动轨迹和放出体轮廓

    Figure  7.  Top coal movement trajectory and released body profile

    图  8  顶煤放出和底煤输送过程的SPH模拟结果($ {V}_{{\mathrm{c}}}=1.0 $ m/s)

    Figure  8.  SPH simulation results of top coal drawing and bottom coal conveying process ($ {V}_{{\mathrm{c}}}=1.0 $ m/s)

    图  9  放煤口监测的煤流速度−时间曲线

    Figure  9.  Coal flow velocity-time curve monitored at the coal drawing outlet

    图  10  不同刮板输送机运行速度下煤岩界面和底煤输送距离(t=9.0 s)

    Figure  10.  Coal-rock interface and bottom coal conveying distance at different scraper conveyor operating speeds (t=9.0 s)

    图  11  不同时刻刮板输送机运行速度对煤岩界面形貌的影响

    Figure  11.  The impact of scraper conveyor speed at different times on the morphology of coal-rock interface

    图  12  2个放煤口同时放煤时的模拟结果(t=11.4 s)

    Figure  12.  Simulation results of coal being released simultaneously from two coal outlets (t=11.4 s)

    图  13  放煤口煤流速度曲线

    Figure  13.  Coal flow velocity curves at coal drawing outlets

    图  14  不同放煤技术下每个放煤口的顶煤放出量

    Figure  14.  Amount of top coal drawing from each coal drawing outlets under different coal drawing techniques

    表  1  SPH模型参数设定

    Table  1.   Parameters seting in SPH model

    参数 取值 参数 取值
    初始粒子间距
    $ {d}_{{\mathrm{ini}}} $/m
    取决于具体算例 声速$ {s} $/(m·s−1) $ \mathrm{ }s=\sqrt{\dfrac{K}{\rho}} $
    光滑长度$ {h}_{i} $/m $ h_i=1.2d_{\mathrm{ini}} $ 人工黏性力系数
    $ {\mathrm{\alpha }}_{\mathrm{\Pi }},\;{\mathrm{\beta }}_{\mathrm{\Pi }} $
    $ {\mathrm{\alpha }}_{\mathrm{\Pi }}=0.1,{\mathrm{\beta }}_{\mathrm{\Pi }}=0.1 $
    时间步长$ \Delta t $/s $ \Delta t\leqslant C_{\mathrm{cour}}\left(\dfrac{h_i}{s}\right) $
    下载: 导出CSV

    表  2  铝颗粒崩塌模拟采用的材料参数

    Table  2.   Material parameters used for aluminum particle collapse simulations

    参数 数值 参数 数值
    密度$ \rho $/(kg·m3) 2 004.0 弹性模量$ E $/MPa 5.84
    摩擦角$ \phi $/(°) 21.9 泊松比$ \upsilon $ 0.3
    黏聚力$ C $/Pa 0
    下载: 导出CSV
  • [1] YANG Shengli,ZHANG Jinwang,CHEN Yi,et al. Effect of upward angle on the drawing mechanism in longwall top-coal caving mining[J]. International Journal of Rock Mechanics and Mining Sciences,2016,85:92-101. doi: 10.1016/j.ijrmms.2016.03.004
    [2] 王家臣. 我国放顶煤开采的工程实践与理论进展[J]. 煤炭学报,2018,43(1):43-51.

    WANG Jiachen. Engineering practice and theoretical progress of top-coal caving mining technology in China[J]. Journal of China Coal Society,2018,43(1):43-51.
    [3] 王国法,庞义辉,马英. 特厚煤层大采高综放自动化开采技术与装备[J]. 煤炭工程,2018,50(1):1-6.

    WANG Guofa,PANG Yihui,MA Ying. Automated mining technology and equipment for fully-mechanized caving mining with large mining height in extra-thick coal seam[J]. Coal Engineering,2018,50(1):1-6.
    [4] 王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5-12.

    WANG Guofa,FAN Jingdao,XU Yajun,et al. Innovation progress and prospect on key technologies of intelligent coal mining[J]. Industry and Mine Automation,2018,44(2):5-12.
    [5] 王家臣,富强. 低位综放开采顶煤放出的散体介质流理论与应用[J]. 煤炭学报,2002,27(4):337-341. doi: 10.3321/j.issn:0253-9993.2002.04.001

    WANG Jiachen,FU Qiang. The loose medium flow field theory and its application on the longwall top-coal caving[J]. Journal of China Coal Society,2002,27(4):337-341. doi: 10.3321/j.issn:0253-9993.2002.04.001
    [6] 王家臣,杨建立,刘颢颢,等. 顶煤放出散体介质流理论的现场观测研究[J]. 煤炭学报,2010,35(3):353-356.

    WANG Jiachen,YANG Jianli,LIU haohao,et al. The practical observation research on loose medium flow field theory on the top-coal caving[J]. Journal of China Coal Society,2010,35(3):353-356.
    [7] 许永祥,王国法,李明忠,等. 特厚坚硬煤层超大采高综放开采支架−围岩结构耦合关系[J]. 煤炭学报,2019,44(6):1666-1678.

    XU Yongxiang,WANG Guofa,LI Mingzhong,et al. Structure coupling between hydraulic roof support and surrounding rock in extra-thick and hard coal seam with super large cutting height and longwall top coal caving operation[J]. Journal of China Coal Society,2019,44(6):1666-1678.
    [8] 张宁波,刘长友,陈玉明. 不稳定厚煤层放顶煤开采煤矸流场规律的数值模拟研究[J]. 煤炭技术,2014,33(12):1-4.

    ZHANG Ningbo,LIU Changyou,CHEN Yuming. Study on coal and gangue flow rule of top-coal caving with erratic hick coal seam by PFC2D[J]. Coal Technology,2014,33(12):1-4.
    [9] 王家臣,张锦旺,杨胜利,等. 多夹矸近水平煤层综放开采顶煤三维放出规律[J]. 煤炭学报,2015,40(5):979-987.

    WANG Jiachen,ZHANG Jinwang,YANG Shengli,et al. 3-D movement law of top-coal in near horizontal coal seam with multi-gangue under caving mining technique[J]. Journal of China Coal Society,2015,40(5):979-987.
    [10] 孙强,单成方,李亚锋,等. 浅埋双硬特厚煤层放煤规律分析及参数研究[J]. 工矿自动化,2022,48(2):61-69.

    SUN Qiang,SHAN Chengfang,LI Yafeng,et al. Analysis of coal drawing law and parameter research in shallow buried double hard and extra-thick coal seam[J]. Industry and Mine Automation,2022,48(2):61-69.
    [11] 何欣,刘长友,吴锋锋,等. 仰斜综放开采煤层仰角对顶煤放出规律的影响研究[J]. 煤炭科学技术,2021,49(9):25-31.

    HE Xin,LIU Changyou,WU Fengfeng,et al. Effect of elevation angle of coal seam on top-coal caving law in fully-mechanized top-coal caving mining face during topple mining[J]. Coal Science and Technology,2021,49(9):25-31.
    [12] 张锦旺,王家臣,魏炜杰. 工作面倾角对综放开采散体顶煤放出规律的影响[J]. 中国矿业大学学报,2018,47(4):805-814.

    ZHANG Jinwang,WANG Jiachen,WEI Weijie. Effect of face dip angle on the drawing mechanism in longwall top-coal caving mining[J]. Journal of China University of Mining & Technology,2018,47(4):805-814.
    [13] 冯宇峰. 综放开采含硬夹矸顶煤破碎机理及控制技术研究[J]. 煤炭科学技术,2020,48(3):133-139.

    FENG Yufeng. Research on top-coal caving mechanism and control technology in extra-thick coal seam with hard dirt band[J]. Coal Science and Technology,2020,48(3):133-139.
    [14] 邹光华,杨健男,关书方,等. 倾斜放煤口上下侧煤岩分界线方程表征及其模拟[J/OL]. 煤炭科学技术,1-13[2024-05-26]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240227.1432.003.html.

    ZOU Guanghua,YANG Jiannan,GUAN Shufang,et al. Characterization and simulation of the coal-rock boundary equation on the upper and lower sides of the inclined coal caving opening[J/OL]. Coal Science and Technology, 1-13[2024-05-26]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240227.1432.003.html.
    [15] 姜志刚,关书方,王明强,等. 大倾角综放面煤岩分界线不对称分布特征及放煤工艺优化[J]. 煤炭技术,2023,42(12):104-108.

    JIANG Zhigang,GUAN Shufang,WANG Mingqiang,et al. Asymmetric distribution characteristics of coal-rock boundary and optimization of coal caving technology in fully mechanized caving face with large dip angle[J]. Coal Technology,2023,42(12):104-108.
    [16] WANG Shuai,ZHANG Chunhua,HE Feng,et al. Numerical modelling of loose top coal and roof mass movement for a re-mined seam using the top coal caving method[J]. PLoS One,2023,18(4). DOI: 10.1371/JOURNAL.PONE.0283883.
    [17] LIU Yang,WANG Jiachen,YANG Shengli,et al. Improving the top coal recovery ratio in longwall top coal caving mining using drawing balance analysis[J]. International Journal of Mining,Reclamation and Environment,2023,37(5):319-337. doi: 10.1080/17480930.2023.2184036
    [18] WEI Weijie,YANG Shengli,LI Meng,et al. Motion mechanisms for top coal and gangue blocks in longwall top coal caving (LTCC) with an extra-thick seam[J]. Rock Mechanics and Rock Engineering,2022,55(8):5107-5121. doi: 10.1007/s00603-022-02928-2
    [19] 张文辉,李东印,王伸,等. 特厚煤层顶煤渐进破坏的块体−颗粒耦合模拟研究[J]. 河南理工大学学报(自然科学版),2022,41(6):24-35.

    ZHANG Wenhui,LI Dongyin,WANG Shen,et al. Study on block-particle coupling approach for modeling progressive failure of top coal in extra thick coal seams[J]. Journal of Henan Polytechnic University (Natural Science),2022,41(6):24-35.
    [20] ZHANG Qunlei,YUE Jinchao,LIU Chuang,et al. Study of automated top-coal caving in extra-thick coal seams using the continuum-discontinuum element method[J]. International Journal of Rock Mechanics and Mining Sciences,2019,122. DOI: 10.1016/j.ijrmms.2019.04.019.
    [21] 李东印,王耀闯,王伸,等. 特厚煤层综放开采顶煤遗失机理及放煤步距优化数值模拟研究[J]. 河南理工大学学报(自然科学版),2023,42(2):1-10.

    LI Dongyin,WANG Yaochuang,WANG Shen,et al. Numerical simulation study of top-coal loss mechanism and reasonable cycle step length for extra-thick coal seam top-coal drawing[J]. Journal of Henan Polytechnic University (Natural Science),2023,42(2):1-10.
    [22] 刘闯,李化敏,马占元,等. 不同煤厚综放工作面合理放煤工艺数值模拟研究[J]. 河南理工大学学报(自然科学版),2023,42(4):40-46.

    LIU Chuang,LI Huamin,MA Zhanyuan,et al. Numerical simulation study on reasonable top coal caving technology in longwall top coal caving working face with different top coal thickness[J]. Journal of Henan Polytechnic University (Natural Science),2023,42(4):40-46.
    [23] 董祥伟. 无网格弱可压缩SPH数值算法及应用扩展[M]. 北京:科学出版社,2021.

    DONG Xiangwei. Extension of meshless weakly compressible SPH numerical algorithms and applications[M]. Beijing:Science Publishing House,2021.
    [24] 张伟, 晏飞, 王兆丰, 等. 基于物质点和深度积分耦合模型的滑坡数值分析[J]. 岩土力学,2024,45(8):2515-2526.

    ZHANG Wei,YAN Fei,WANG Zhaofeng,et al. Numerical analysis oflandslides based on coupling modelof material point method and depth integral[J]. Rock and Soil Mechanics,2024,45(8):2515-2526.
    [25] FENG Ruofeng,FOURTAKAS G,ROGERS B D,et al. Large deformation analysis of granular materials with stabilized and noise-free stress treatment in smoothed particle hydrodynamics (SPH)[J]. Computers and Geotechnics,2021,138. DOI: 10.1016/J.COMPGEO.2021.104356.
    [26] 胡嫚,谢谟文,王立伟. 基于弹塑性土体本构模型的滑坡运动过程SPH模拟[J]. 岩土工程学报,2016,38(1):58-67.

    HU Man,XIE Mowen,WANG Liwei. SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model[J]. Chinese Journal of Geotechnical Engineering,2016,38(1):58-67.
    [27] NGUYEN N H T,BUI H H,NGUYEN G D. Effects of material properties on the mobility of granular flow[J]. Granular Matter,2020,22(3). DOI: 10.1007/s10035-020-01024-y.
    [28] 高涛,谢守勇,胡嫚,等. 基于亚塑性本构模型的土壤−触土部件SPH互作模型[J]. 农业工程学报,2022,38(13):47-55.

    GAO Tao,XIE Shouyong,HU Man,et al. Soil-soil engaging component SPH model based on a hypoplastic constitutive model[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(13):47-55.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  19
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-02
  • 修回日期:  2024-09-12
  • 网络出版日期:  2024-08-02

目录

    /

    返回文章
    返回