留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械冲击条件下锂离子蓄电池安全性分析

倪春明

倪春明. 机械冲击条件下锂离子蓄电池安全性分析[J]. 工矿自动化,2024,50(9):161-166.  doi: 10.13272/j.issn.1671-251x.2024050064
引用本文: 倪春明. 机械冲击条件下锂离子蓄电池安全性分析[J]. 工矿自动化,2024,50(9):161-166.  doi: 10.13272/j.issn.1671-251x.2024050064
NI Chunming. Safety analysis of lithium-ion batteries under mechanical shock conditions[J]. Journal of Mine Automation,2024,50(9):161-166.  doi: 10.13272/j.issn.1671-251x.2024050064
Citation: NI Chunming. Safety analysis of lithium-ion batteries under mechanical shock conditions[J]. Journal of Mine Automation,2024,50(9):161-166.  doi: 10.13272/j.issn.1671-251x.2024050064

机械冲击条件下锂离子蓄电池安全性分析

doi: 10.13272/j.issn.1671-251x.2024050064
基金项目: 国家发展和改革委项目(0732118)。
详细信息
    作者简介:

    倪春明(1975—),男,上海人,副研究员,硕士,主要从事电气设备的防爆检测与技术研究工作,E-mail:bright_ni@163.com

  • 中图分类号: TD679

Safety analysis of lithium-ion batteries under mechanical shock conditions

  • 摘要: 煤矿井下环境恶劣且空间狭小,锂离子蓄电池容易遭受外部的物理冲击或损害,引发安全事故。以100 A·h矿用锰酸锂离子蓄电池作为研究对象,对该电池进行针刺、高温、潮湿试验,分析电池的安全性能。通过针刺试验模拟煤矿井下环境中潜在的机械冲击,用尖锐物体刺入电池,观察电池在极端条件下的反应。使用炉箱和湿度控制环境箱模拟煤矿井下的高温和潮湿环境,对针刺后的电池实施试验,评估电池在煤矿井下极端环境中的安全性和可靠性。试验结果表明:① 电池被钨针刺穿后,表面出现一定变形和破裂,但未出现电解质泄漏的情况,同时电池并未出现冒烟、起火、爆炸等危险情况,内部也没有气体产生。被钨针刺穿后,电池温度显著上升,但能控制在安全范围内且没有引发燃烧或爆炸,说明该电池在煤矿井下应用中具有一定的热稳定性。② 被刺穿电池在炉箱加热后显著膨胀,并伴随有气体泄漏的现象,但尚未引发爆炸或燃烧,说明电池在特定条件下具有一定的热稳定性。③ 在潮湿环境下,被刺穿电池产生气体,增加了内部压力,在刺穿和潮湿的双重影响下,使得电池温度增加,但因为潮湿环境中的水分起到一定的冷却作用,与高温环境下相比,电池温度上升趋势较为缓慢,且仍未引发爆炸或燃烧,说明电池在潮湿环境下仍具有热稳定性,不会出现热失控现象。

     

  • 图  1  针刺试验下电池体上的点位布设

    Figure  1.  Points layout on the battery body under puncture testing

    图  2  高温试验下电池体上的点位布设

    Figure  2.  Points layout on the battery body under high-temperature testing

    图  3  被针刺穿后的电池

    Figure  3.  The battery after puncture

    图  4  开路电压与温度变化曲线

    Figure  4.  Variation curves of open circuit voltage with temperature

    图  5  电池背部外观

    Figure  5.  Appearance of the back of the battery

    图  6  高温条件下不同点位的温度变化曲线

    Figure  6.  Temperature variation curves at different points under high-temperature conditions

    图  7  潮湿环境下不同点位的温度变化曲线

    Figure  7.  Temperature variation curves at different points under humid conditions

    表  1  100 A·h矿用锰酸锂离子蓄电池参数

    Table  1.   Parameters of 100 A·h lithium manganese oxide ion battery for mining

    额定电压/V 正常电压范围/V 尺寸(长×宽×高)/mm 工作温度范围/℃
    4.5 3.0~4.9 320×240×22 −10~50
    下载: 导出CSV
  • [1] 王昉. 矿用防爆锂离子蓄电池无轨胶轮车在煤矿井下应用的环保性与经济性[J]. 陕西煤炭,2020,39(增刊2):167-170,204.

    WANG Fang. Application of mine explosion-proof lithium-ion battery trackless rubber tyred car in underground coal mine[J]. Shaanxi Coal,2020,39(S2):167-170,204.
    [2] 吴碧海,谭皓文,周子裕,等. 配电自动化装置蓄电池运行可靠性分析及在线监测开发[J]. 机电工程技术,2023,52(9):220-224.

    WU Bihai,TAN Haowen,ZHOU Ziyu,et al. Reliability analysis and online monitoring development of battery in distribution automation equipment[J]. Mechanical & Electrical Engineering Technology,2023,52(9):220-224.
    [3] 姚源. 煤矿在用大容量锂离子蓄电池安全性分析及管理措施[J]. 煤矿安全,2020,51(7):143-146.

    YAO Yuan. Safety analysis and management measures of in-service large capacity lithium battery for underground mining[J]. Safety in Coal Mines,2020,51(7):143-146.
    [4] 刘鹏,章玄,侯睿,等. GEO锂离子蓄电池组在轨性能评估[J]. 电源技术,2022,46(10):1147-1150.

    LIU Peng,ZHANG Xuan,HOU Rui,et al. On-orbit performance evaluation of GEO lithium ion battery[J]. Chinese Journal of Power Sources,2022,46(10):1147-1150.
    [5] 李富伟,曹凤金,李高升,等. 锂离子蓄电池动力电源在非煤地下矿山的安全应用研究[J]. 矿业研究与开发,2023,43(8):208-216.

    LI Fuwei,CAO Fengjin,LI Gaosheng,et al. Research on safety application of lithium-ion battery power supply in non-coal underground mines[J]. Mining Research and Development,2023,43(8):208-216.
    [6] 刘敏,陈凌宇,朱宇勋,等. 铅酸蓄电池在电网中的健康监测及梯次利用[J]. 浙江工业大学学报,2023,51(3):319-323,329.

    LIU Min,CHEN Lingyu,ZHU Yuxun,et al. The health monitoring and step utilization of lead-acid battery in power grid and resource reuse[J]. Journal of Zhejiang University of Technology,2023,51(3):319-323,329.
    [7] 屈克庆,董浩,毛玲,等. 基于融合健康因子和集成极限学习机的锂离子电池SOH在线估计[J]. 上海交通大学学报,2024,58(3):263-272.

    QU Keqing,DONG Hao,MAO Ling,et al. SOH online estimation of lithium-ion batteries based on fusion health factor and integrated extreme learning machine[J]. Journal of Shanghai Jiao Tong University,2024,58(3):263-272.
    [8] 曹勇. 多孔铝箔改善锂离子电池的针刺安全性[J]. 电池,2023,53(3):312-315.

    CAO Yong. Improving nail penetration safety of Li-ion battery by porous Al foil[J]. Battery Bimonthly,2023,53(3):312-315.
    [9] 苑志祥,张浩,张雪,等. 深潜器用蓄电池的研究进展[J]. 硅酸盐学报,2023,51(11):2868-2875.

    YUAN Zhixiang,ZHANG Hao,ZHANG Xue,et al. Recent development on batteries of deep-sea submersibles[J]. Journal of the Chinese Ceramic Society,2023,51(11):2868-2875.
    [10] 张洒洒,周旭峰,刘兆平,等. 碳基三维集流体在锂金属电池中的应用研究[J]. 电源技术,2022,46(1):2-5.

    ZHANG Sasa,ZHOU Xufeng,LIU Zhaoping,et al. Research progress of carbon-based 3D current collectors for lithium metal batteries[J]. Chinese Journal of Power Sources,2022,46(1):2-5.
    [11] 张艳岗,郭旭旭,薛文阳,等. 锂离子动力电池系统多尺度热安全研究[J]. 北京航空航天大学学报,2023,49(1):31-44.

    ZHANG Yangang,GUO Xuxu,XUE Wenyang,et al. Research on multi-scale thermal safety of lithium-ion power battery system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):31-44.
    [12] 殷卫星. 废旧锂离子电池短路火灾的触发机理及危险性[J]. 消防科学与技术,2022,41(1):36-40.

    YIN Weixing. Triggering mechanism and risk of short circuit fire of waste li-ion battery[J]. Fire Science and Technology,2022,41(1):36-40.
    [13] 夏益辉,黄利明,叶志浩,等. 一种适用于蓄电池组的新型快速均衡拓扑结构[J]. 海军工程大学学报,2022,34(6):16-21.

    XIA Yihui,HUANG Liming,YE Zhihao,et al. A new fast equalization topology for storage battery[J]. Journal of Naval University of Engineering,2022,34(6):16-21.
    [14] 王鲜. 煤矿电机车蓄电池自动充电管理信息系统研究[J]. 中国高新科技,2022(1):92-93.

    WANG Xian. Research on automatic charging management information system of storage battery of coal mine electric locomotive[J]. China High and New Technology,2022(1):92-93.
    [15] 刘梦璇,李子坤,周豪杰,等. 沥青在锂离子电池负极材料中的应用研究进展[J]. 炭素技术,2022,41(1):1-5,40.

    LIU Mengxuan,LI Zikun,ZHOU Haojie,et al. Research progress of pitch in anode materials for lithium-ion batteries[J]. Carbon Techniques,2022,41(1):1-5,40.
    [16] 李起伟,李忠奎,王海南. 基于锂离子蓄电池的煤矿井下储能微电网设计研究[J]. 煤炭技术,2024,43(6):233-237.

    LI Qiwei,LI Zhongkui,WANG Hainan. Design and research of underground energy storage microgrid in coal mines based on lithium ion batteries[J]. Coal Technology,2024,43(6):233-237.
    [17] 王淼,王晓丹. 基于高镍NCA811正极的21700锂离子电池在某装备上的应用研究[J]. 电源技术,2023,47(8):1014-1019.

    WANG Miao,WANG Xiaodan. Research of 21700-type lithium ion battery based on Ni-rich NCA811 cathode applied in a certain equipment[J]. Chinese Journal of Power Sources,2023,47(8):1014-1019.
    [18] 张广续,魏学哲,陈思琦,等. 高温循环老化对锂离子电池安全性影响研究[J]. 机械工程学报,2023,59(22):33-45. doi: 10.3901/JME.2023.22.033

    ZHANG Guangxu,WEI Xuezhe,CHEN Siqi,et al. Research on the impact of high-temperature cyclic aging on the safety of lithium-ion batteries[J]. Journal of Mechanical Engineering,2023,59(22):33-45. doi: 10.3901/JME.2023.22.033
    [19] 于继航,周培俊,蒋洋生. 电解液阻燃添加剂对锂离子电池针刺安全性影响试验研究[J]. 消防科学与技术,2022,41(9):1209-1212,1259.

    YU Jihang,ZHOU Peijun,JIANG Yangsheng. Experimental study on the effect of electrolyte flame retardant additives on the nail penetration safety of lithium-ion battery[J]. Fire Science and Technology,2022,41(9):1209-1212,1259.
    [20] 穆云飞,姚泰昂,贾宏杰,等. 基于分布式能源的煤矿带式输送机与蓄电池协同经济调度策略[J]. 天津大学学报(自然科学与工程技术版),2020,53(9):951-958.

    MU Yunfei,YAO Tai'ang,JIA Hongjie,et al. Coordinated economic scheduling strategy for coal mine belt conveyor and battery based on distributed energy[J]. Journal of Tianjin University(Science and Technology),2020,53(9):951-958.
    [21] 杨卓,卢勇,赵庆,等. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报,2023,38(6):589-605. doi: 10.15541/jim20220331

    YANG Zhuo,LU Yong,ZHAO Qing,et al. X-ray diffraction rietveld refinement and its application in cathode materials for lithium-ion batteries[J]. Journal of Inorganic Materials,2023,38(6):589-605. doi: 10.15541/jim20220331
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-21
  • 修回日期:  2024-09-22
  • 网络出版日期:  2024-08-30

目录

    /

    返回文章
    返回