Real time prediction technology for load bearing effect of hydraulic support after initial support based on data-driven approach
-
摘要: 采煤工作面实际生产中,受顶板条件、采动、液压支架姿态影响,液压支架初撑后立柱压力可能发生变化,进而影响支架初撑后承压效果。液压支架在初撑后出现的承压失效可能导致煤壁片帮、架间冒漏、支架前倾、倒架等问题。目前智采工作面液压支架初撑力调控策略大多是直接判断升柱时立柱压力是否达到额定初撑力,缺乏考虑初撑后立柱压力变化引起的承压效果判断。针对上述问题,提出了一种基于立柱压力数据驱动的液压支架初撑后承压效果即时预测方法。将液压支架初撑后3 min内的立柱压力历史数据状况分为6种典型工况,并根据初撑后承压效果的不同将6种典型工况分为有效承压或失效承压;通过相关性分析,确定了影响支架初撑后承压效果的5个特征因素;对立柱压力样本进行有效承压或失效承压人工标注,并进行特征提取,将特征值分别输入决策树、随机森林、支持向量机、K最近邻(KNN) 4种不同算法建立预测模型,经过对比分析,随机森林模型预测准确率最高,达到95.60%,基本满足模型应用的准确率要求;建立了基于随机森林的液压支架初撑后承压效果即时预测模型,在此基础上开发了液压支架初撑后承压效果即时预测系统,并部署到煤矿现场应用,经过连续25 d的运行,该系统采集到液压支架初撑后3 min内的立柱压力后,可在5 s内输出液压支架初撑后的承压效果,预测结果与实际操作记录对比准确率为82.48%,说明该系统具有较高的承压效果预测准确性。Abstract: In the actual production of coal working face, due to the roof conditions, mining influence, hydraulic support attitude and their mutual influence, the column pressure after the initial support of the hydraulic support may change, thus affecting the load bearing effect after the initial support of the support. The pressure failure of hydraulic supports after initial support may lead to problems such as coal wall lining, inter frame leakage, support leaning forward, and overturning. At present, most of the control strategies for the initial support force of hydraulic supports in intelligent mining working faces directly determine whether the column pressure reaches the rated initial support force when lifting the column. It lacks consideration for the load bearing effect caused by the change in column pressure after initial support. In order to solve the above problems, a real-time prediction method for the load bearing effect of hydraulic support after initial support based on column pressure data-driven approach is proposed. The method divides the historical data of column pressure within 3 minutes after initial support of hydraulic supports into 6 typical working conditions. The method classifies the 6 typical working conditions into effective load bearing or failure load bearing according to the different load bearing effects after initial support. Through correlation analysis, five feature factors affecting the load bearing effect of the support after initial support are identified. The method manually annotates the effective or failed load bearing samples of the column, and extracts features. The method inputs the feature values into four different algorithms: decision tree, random forest, support vector machine, and K-nearest neighbor (KNN) to establish classification models. After comparative analysis, the random forest model has the highest precision, reaching 95.60%, which basically meets the accuracy requirements of the model application. A real-time prediction model for the load bearing effect of hydraulic supports after initial support based on random forest is established. On this basis, a real-time prediction system for the load bearing effect of hydraulic supports after initial support is developed and deployed to coal mine sites. After continuous operation for 25 days, the system collects the column pressure within 3 minutes after the initial support of the hydraulic support and could output the load bearing effect of the hydraulic support within 5 seconds. The accuracy of the prediction results compared with the actual operation records is 82.48%, indicating that the system has high accuracy and stability in predicting the load bearing effect.
-
表 1 承压效果样本数量统计
Table 1. Statistics on the number of samples of pressure-bearing effect
样本 样本数量/个 占比/% 失效承压 196 18.60 有效承压 858 81.40 表 2 各分类模型准确率对比
Table 2. Comparison of accuracy among different classification models
% 模型 训练集准确率 测试集准确率 决策树 100 94.64 随机森林 99.19 95.60 支持向量机 99.00 92.74 KNN 93.69 91.39 表 3 支架操作策略汇总
Table 3. Support operating strategy summary
决策建议 策略结论 调控操作1 动作类型:降柱;操作时长:1 s 调控操作2 动作类型:升柱;目标压力:24 MPa;操作时长:5 s 人工检查 检查支架姿态及液压系统状态 表 4 承压效果预测结果统计
Table 4. Load bearing effect prediction results
承压效果 数量/个 占比/% 失效承压 1 861 40.07 有效承压 2 783 59.93 表 5 决策建议类型统计
Table 5. The types of recommendations for decision-making
操作建议 数量/个 占比/% 无操作 2 781 59.88 升柱 1 827 39.34 降升 2 0.05 人工检查 34 0.73 -
[1] 王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1-10.WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1-10. [2] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46. [3] 付翔,秦一凡,李浩杰,等. 新一代智能煤矿人工智能赋能技术研究综述[J]. 工矿自动化,2023,49(9):122-131,139.FU Xiang,QIN Yifan,LI Haojie,et al. Summary of research on artificial intelligence empowerment technology for new generation intelligent coal mine[J]. Journal of Mine Automation,2023,49(9):122-131,139. [4] 李建,任怀伟,巩师鑫. 综采工作面液压支架状态感知与分析技术研究[J]. 工矿自动化,2023,49(10):1-7,103.LI Jian,REN Huaiwei,GONG Shixin. Research on state perception and analysis technology of hydraulic support in fully mechanized working face[J]. Journal of Mine Automation,2023,49(10):1-7,103. [5] 徐军见,郭江涛,赵光绪,等. 基于多支架联合分析技术的顶板运动规律分析[J]. 煤矿安全,2018,49(9):262-265.XU Junjian,GUO Jiangtao,ZHAO Guangxu,et al. Roof movement law analysis based on multi-support joint analysis technique[J]. Safety in Coal Mines,2018,49(9):262-265. [6] 任怀伟,杜毅博,侯刚. 综采工作面液压支架−围岩自适应支护控制方法[J]. 煤炭科学技术,2018,46(1):150-155,191.REN Huaiwei,DU Yibo,HOU Gang. Self adaptive support control method of hydraulic support-surrounding rock in fully-mechanized coal mining face[J]. Coal Science and Technology,2018,46(1):150-155,191. [7] 尹希文,徐刚,刘前进,等. 基于支架载荷的矿压双周期分析预测方法[J]. 煤炭学报,2021,46(10):3116-3126.YIN Xiwen,XU Gang,LIU Qianjin,et al. Method of double-cycle analysis and prediction for rock pressure based on the support load[J]. Journal of China Coal Society,2021,46(10):3116-3126. [8] 任艳芳. 综采工作面液压支架支护能力的分析与评价方法[J]. 采矿与岩层控制工程学报,2020,2(3):79-85.REN Yanfang. Analysis and evaluation method for supporting ability of supports in coalmine working face[J]. Journal of Mining and Strata Control Engineering,2020,2(3):79-85. [9] 徐刚,张春会,张震,等. 综放工作面顶板灾害类型和发生机制及防治技术[J]. 煤炭科学技术,2023,51(2):44-57.XU Gang,ZHANG Chunhui,ZHANG Zhen,et al. Types,occurrence mechanisms and prevention techniques of roof disasters in fully-mechanized top coal caving face[J]. Coal Science and Technology,2023,51(2):44-57. [10] 徐刚,张春会,张振金. 综放工作面顶板缓慢活动支架增阻预测模型[J]. 煤炭学报,2020,45(11):3678-3687.XU Gang,ZHANG Chunhui,ZHANG Zhenjin. Prediction model for increasing resistance of hydraulic support due to slow motion of the roof in mechanized mining working face[J]. Journal of China Coal Society,2020,45(11):3678-3687. [11] 胡相捧,刘新华. 初撑阶段的支架位姿与驱动千斤顶一一映射及调整策略[J]. 采矿与安全工程学报,2021,38(4):666-677.HU Xiangpeng,LIU Xinhua. One-to-one mapping between powered support posture and actuating rams and its adjustment strategy during setting stage[J]. Journal of Mining & Safety Engineering,2021,38(4):666-677. [12] 邱常青. 提高放顶煤工作面液压支架初撑力的研究[J]. 煤,2018,27(2):75-76.QIU Changqing. Research on improving the initial support force of hydraulic support in the working face of roof-placed coal[J]. Coal,2018,27(2):75-76. [13] 王国法,庞义辉. 液压支架与围岩耦合关系及应用[J]. 煤炭学报,2015,40(1):30-34.WANG Guofa,PANG Yihui. Relationship between hydraulic support and surrounding rock coupling and its application[J]. Journal of China Coal Society,2015,40(1):30-34. [14] 曹连民,郭震,仲崇涛,等. 液压支架初撑力手动增压装置设计与应用[J]. 工矿自动化,2017,43(6):10-14.CAO Lianmin,GUO Zhen,ZHONG Chongtao,et al. Design and application of manual pressurization device for initial support force of hydraulic support[J]. Industry and Mine Automation,2017,43(6):10-14. [15] 胡相捧,刘新华,庞义辉,等. 基于BP神经网络PID的液压支架初撑力自适应控制[J]. 矿业科学学报,2020,5(6):662-671.HU Xiangpeng,LIU Xinhua,PANG Yihui,et al. Adaptive control of setting load of hydraulic support based on BP neural network PID[J]. Journal of Mining Science and Technology,2020,5(6):662-671. [16] 张文杰. 液压支架初撑力自动调节控制系统的研究[J]. 机械管理开发,2022,37(5):257-258.ZHANG Wenjie. Research on automatic adjustment control system of hydraulic bracket initial support force[J]. Mechanical Management and Development,2022,37(5):257-258. [17] 贺磊,苏琪. 液压支架初撑力控制系统的研究[J]. 机械管理开发,2021,36(8):215-216.HE Lei,SU Qi. Research on control system of hydraulic support initial force[J]. Mechanical Management and Development,2021,36(8):215-216. [18] 吕文玉,丁科,伍永平,等. 综采面支架工作阻力的PCA−SVR预测模型[J]. 西安科技大学学报,2021,41(6):973-978.LYU Wenyu,DING Ke,WU Yongping,et al. PCA-SVR prediction model of support working resistance in fully mechanized mining face[J]. Journal of Xi'an University of Science and Technology,2021,41(6):973-978. [19] 赵毅鑫,杨志良,马斌杰,等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65.ZHAO Yixin,YANG Zhiliang,MA Binjie,et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65. [20] 余琼芳,王联港,杨艺. 基于LSTM−TCN的综采工作面顶板压力预测[J]. 煤炭技术,2023,42(6):5-9.YU Qiongfang,WANG Liangang,YANG Yi. Pressure prediction of top plate of comprehensive mining working face based on LSTM-TCN[J]. Coal Technology,2023,42(6):5-9. [21] 吴秀娟,程永强. 基于MATLAB的支架阻力分析系统的研究[J]. 煤炭技术,2016,35(4):248-250.WU Xiujuan,CHENG Yongqiang. Research of support resistance analysis system based on MATLAB[J]. Coal Technology,2016,35(4):248-250. [22] 李欣. 基于WSN的支架初撑力提取与工作阻力预测方法研究[D]. 徐州:中国矿业大学,2015.LI Xin. Research on extraction of initial supporting force and prediction of working resistance of support based on WSN[D]. Xuzhou:China University of Mining and Technology,2015. [23] 韩俊效,李化敏,熊祖强,等. 寺河矿大采高超长工作面初撑力与采场控制分析[J]. 煤炭技术,2010,29(12):74-75.HAN Junxiao,LI Huamin,XIONG Zuqiang,et al. Analysis on setting load and stope control at overlength long face with large mining height in Sihe coal mine[J]. Coal Technology,2010,29(12):74-75.