留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿用无人驾驶车辆行人检测技术研究

周李兵 于政乾 卫健健 蒋雪利 叶柏松 赵叶鑫 杨斯亮

周李兵,于政乾,卫健健,等. 矿用无人驾驶车辆行人检测技术研究[J]. 工矿自动化,2024,50(10):29-37.  doi: 10.13272/j.issn.1671-251x.2024050058
引用本文: 周李兵,于政乾,卫健健,等. 矿用无人驾驶车辆行人检测技术研究[J]. 工矿自动化,2024,50(10):29-37.  doi: 10.13272/j.issn.1671-251x.2024050058
ZHOU Libing, YU Zhengqian, WEI Jianjian, et al. Research on pedestrian detection technology for mining unmanned vehicles[J]. Journal of Mine Automation,2024,50(10):29-37.  doi: 10.13272/j.issn.1671-251x.2024050058
Citation: ZHOU Libing, YU Zhengqian, WEI Jianjian, et al. Research on pedestrian detection technology for mining unmanned vehicles[J]. Journal of Mine Automation,2024,50(10):29-37.  doi: 10.13272/j.issn.1671-251x.2024050058

矿用无人驾驶车辆行人检测技术研究

doi: 10.13272/j.issn.1671-251x.2024050058
基金项目: 江苏省科技成果转化专项项目(BA2022040);天地科技股份有限公司科技创新创业资金专项项目(2023-TD-ZD005-003);天地(常州)自动化股份有限公司科研项目(2022TY1003)。
详细信息
    作者简介:

    周李兵(1984—),男,湖北黄梅人,高级工程师,研究方向为矿山机电系统智能化、智能检测与控制等,E-mail:yjj20002022@163.com

  • 中图分类号: TD67

Research on pedestrian detection technology for mining unmanned vehicles

  • 摘要: 矿用无人驾驶车辆的工作环境光照条件复杂,行人检测经常出现漏检现象,导致矿用无人驾驶车辆可靠性及安全性不足。针对巷道光照条件复杂的问题,提出了一种弱光图像增强算法:将弱光图像由RGB图像空间分解为HSV图像空间,通过Logarithm函数对亮度分量先进行光照,再通过双边滤波器去除噪声;采用形态学对饱和度分量进行闭操作,再通过高斯滤波器滤除噪声;将图像转换回RGB图像空间,通过半隐式ROF去噪模型对图像再次进行去噪,得到增强图像。针对行人检测存在漏检、精度低的问题,提出了一种基于改进YOLOv3的矿用无人驾驶车辆行人检测算法:采用密集连接块取代YOLOv3中的Residual连接,提高特征图利用率;采用Slim−neck结构优化YOLOv3的特征融合结构,使得特征图之间能够进行高效的信息融合,进一步提高对小目标行人的检测精度,并利用其内部特殊的轻量化卷积结构,提高检测速度;加入轻量级的卷积注意力模块(CBAM)增强算法对目标类别和位置的注意程度,提高行人检测精度。实验结果表明:① 提出的弱光图像增强算法能够有效提高图像可见度,图像中行人的纹理更加清晰,并具有更好的噪声抑制效果。② 基于增强后图像的矿用无人驾驶车辆行人检测算法的平均精度达95.68%,相较于基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别算法、YOLOv5、YOLOv3算法分别提高了2.53%,6.42%,11.77%,且运行时间为29.31 ms。③ 基于增强后图像,YOLOv3和基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别算法出现了漏检和误检的问题,而矿用无人驾驶车辆行人检测算法有效改善了该问题。

     

  • 图  1  弱光图像增强算法原理

    Figure  1.  Principle of low-light image enhancement method

    图  2  弱光图像HSV图像空间分量

    Figure  2.  HSV component of low-light images

    图  3  增强前的井下弱光图像

    Figure  3.  Underground low-light images before enhancement

    图  4  增强后的井下弱光图像

    Figure  4.  Enhanced underground low-light images

    图  5  基于改进YOLOv3的矿用无人驾驶车辆行人检测算法的网络结构

    Figure  5.  Network structure of pedestrian detection algorithm for mining unmanned vehicles based on improved YOLOv3

    图  6  密集连接块结构

    Figure  6.  Densely connected block structure

    图  7  改进YOLOv3网络中Slim−neck结构

    Figure  7.  Slim-neck structure in improved YOLOv3 network

    图  8  CBAM结构

    Figure  8.  Convolutional block attention module (CBAM) structure

    图  9  CAM结构

    Figure  9.  Channel attention model (CAM) structure

    图  10  SAM结构

    Figure  10.  Spatial attention model(SAM) structure

    图  11  矿用无轨胶轮车行人检测平台

    Figure  11.  Pedestrian detection platform for trackless rubber-wheeled vehicle in mining applications

    图  12  实验硬件计算平台

    Figure  12.  Experimental hardware computing platform

    图  13  不同算法在煤矿巷道弱光图像下的行人检测结果

    Figure  13.  Pedestrian detection results of different algorithms on low-light images of coal mine roadway

    图  14  不同算法在煤矿巷道增强图像下的行人检测结果

    Figure  14.  Pedestrian detection results of different algorithms on enhanced images of coal mine roadway

    表  1  弱光图像增强算法定量分析结果

    Table  1.   Quantitative results of low-light images enhancement algorithm

    算法PSNRSSIM
    RetinexNet16.510.646 1
    LLFlow25.270.924 9
    本文增强算法26.480.996 7
    下载: 导出CSV

    表  2  各行人检测算法性能比较

    Table  2.   Comparison of the performance of various pedestrian detection algorithms

    输入 算法 平均精度/% 运行时间/ms
    弱光图像SSD35.2257.66
    RetinaNet37.7346.45
    Faster R−CNN44.2284.41
    YOLOv372.2333.56
    YOLOv579.3732.98
    文献[26]81.8131.52
    本文算法83.6731.28
    增强图像SSD36.5152.88
    RetinaNet51.6346.31
    Faster R−CNN45.7283.27
    YOLOv383.9131.46
    YOLOv589.2630.47
    文献[26]93.1529.59
    本文算法95.6829.31
    下载: 导出CSV

    表  3  消融实验结果

    Table  3.   Results of ablation experiments

    输入 算法 密集连
    接块
    Slim−neck CBAM 平均精
    度/%
    运行时
    间/ms
    弱光图像YOLOv3×××72.2333.56
    A××77.7134.97
    B×81.1629.35
    本文算法83.6731.28
    增强图像YOLOv3×××83.9131.46
    A××88.6932.72
    B×93.5326.91
    本文算法95.6829.31
    下载: 导出CSV
  • [1] 林燕霞,苏丹. 基于SLAM技术的矿区巷道巡检机器人路径规划优化[J]. 金属矿山,2024(4):209-214.

    LIN Yanxia,SU Dan. Path planning optimization of mine roadway inspection robot based on SLAM technique[J]. Metal Mine,2024(4):209-214.
    [2] 韩江洪,卫星,陆阳,等. 煤矿井下机车无人驾驶系统关键技术[J]. 煤炭学报,2020,45(6):2104-2115.

    HAN Jianghong,WEI Xing,LU Yang,et al. Driverless technology of underground locomotive in coal mine[J]. Journal of China Coal Society,2020,45(6):2104-2115.
    [3] 杨伟康,吕文生,杨鹏,等. 基于倒置残差的井下无人车目标检测研究[J]. 矿业研究与开发,2024,44(4):222-227.

    YANG Weikang,LYU Wensheng,YANG Peng,et al. Research on target detection of underground unmanned vehicle based on inverted residual[J]. Mining Research and Development,2024,44(4):222-227.
    [4] 董观利,宋春林. 基于视频的矿井行人越界检测系统[J]. 工矿自动化,2017,43(2):29-34.

    DONG Guanli,SONG Chunlin. Underground pedestrian crossing detection system based on video[J]. Industry and Mine Automation,2017,43(2):29-34.
    [5] 刘备战,赵洪辉,周李兵. 面向无人驾驶的井下行人检测方法[J]. 工矿自动化,2021,47(9):113-117.

    LIU Beizhan,ZHAO Honghui,ZHOU Libing. Unmanned driving-oriented underground mine pedestrian detection method[J]. Industry and Mine Automation,2021,47(9):113-117.
    [6] 李伟山,卫晨,王琳. 改进的Faster RCNN煤矿井下行人检测算法[J]. 计算机工程与应用,2019,55(4):200-207.

    LI Weishan,WEI Chen,WANG Lin. Improved Faster RCNN approach for pedestrian detection in underground coal mine[J]. Computer Engineering and Applications,2019,55(4):200-207.
    [7] 罗坤鑫. 矿用车辆多信息融合行人检测技术研究[D]. 西安:西安科技大学,2021.

    LUO Kunxin. Research on pedestrian detection technology of multi-information fusion for mining vehicles[D]. Xi'an:Xi'an University of Science and Technology,2021.
    [8] 张应团,李涛,郑嘉祺. 基于DCNN的井下行人监测方法研究[J]. 计算机与数字工程,2019,47(8):2027-2032. doi: 10.3969/j.issn.1672-9722.2019.08.039

    ZHANG Yingtuan,LI Tao,ZHENG Jiaqi. Research of underground pedestrian monitoring method based on DCNN[J]. Computer & Digital Engineering,2019,47(8):2027-2032. doi: 10.3969/j.issn.1672-9722.2019.08.039
    [9] 谭显静. 图像去噪的ROF模型的理论分析与算法研究[D]. 重庆:重庆大学,2019.

    TAN Xianjing. Theoretical analysis and algorithm of ROF model for image denoising[D]. Chongqing:Chongqing University,2019.
    [10] 刘寿鑫,龙伟,李炎炎,等. 基于HSV色彩空间的低照度图像增强[J]. 计算机工程与设计,2021,42(9):2552-2560.

    LIU Shouxin,LONG Wei,LI Yanyan,et al. Low-light image enhancement based on HSV color space[J]. Computer Engineering and Design,2021,42(9):2552-2560.
    [11] 余化鹏,李舟,杨新瑞,等. 基于目标检测结果的轮廓及颜色识别研究[J]. 成都大学学报(自然科学版),2019,38(3):276-280. doi: 10.3969/j.issn.1004-5422.2019.03.011

    YU Huapeng,LI Zhou,YANG Xinrui,et al. Research on object contours extraction and color recognition based on object detection result[J]. Journal of Chengdu University (Natural Science Edition),2019,38(3):276-280. doi: 10.3969/j.issn.1004-5422.2019.03.011
    [12] 董红召,赵龙钢,赵晨馨,等. OBD支持下公交车到达时间的回归预测方法[J]. 高技术通讯,2021,31(4):425-434. doi: 10.3772/j.issn.1002-0470.2021.04.010

    DONG Hongzhao,ZHAO Longgang,ZHAO Chenxin,et al. Regression prediction method of bus arrival time supported by OBD[J]. Chinese High Technology Letters,2021,31(4):425-434. doi: 10.3772/j.issn.1002-0470.2021.04.010
    [13] RUDIN L I,OSHER S,FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena,1992,60(1/2/3/4):259-268.
    [14] WEI Chen,WANG Wenjing,YANG Wenhan,et al. Deep Retinex decomposition for low-light enhancement[EB/OL]. (2022-08-21)[2024-04-22]. https://arxiv.org/abs/1808.04560v1.
    [15] WANG Yufei,WAN Renjie,YANG Wenhan,et al. Low-light image enhancement with normalizing flow[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2022,36(3):2604-2612. doi: 10.1609/aaai.v36i3.20162
    [16] WANG Zhou,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612. doi: 10.1109/TIP.2003.819861
    [17] 舒军,蒋明威,杨莉,等. DenseNet模型轻量化改进研究[J]. 华中师范大学学报(自然科学版),2020,54(2):187-193.

    SHU Jun,JIANG Mingwei,YANG Li,et al. Lightweight improvement research of DenseNet model[J]. Journal of Central China Normal University(Natural Sciences),2020,54(2):187-193.
    [18] LI Hulin,LI Jun,WEI Hanbing,et al. Slim-neck by GSConv:a lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing,2024,21(3). DOI: 10.1007/s11554-024-01436-6.
    [19] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[M]. Cham:Springer International Publishing,2018:3-19.
    [20] 吴永俊,汪泓,杨晨. 基于改进DeepLabV3+的石漠化地区裸岩信息提取[J]. 航天返回与遥感,2024,45(1):123-135.

    WU Yongjun,WANG Hong,YANG Chen. Extraction of bare rock information in rocky desertification area based on improved DeepLabV3+[J]. Spacecraft Recovery & Remote Sensing,2024,45(1):123-135.
    [21] 吕璐璐,陈树越,王利平,等. 深度特征融合与重构的微纤维识别算法[J]. 现代电子技术,2022,45(1):83-88.

    LYU Lulu,CHEN Shuyue,WANG Liping,et al. Microfiber recognition algorithm based on deep feature fusion and reconstruction[J]. Modern Electronics Technique,2022,45(1):83-88.
    [22] 樊嵘,马小陆. 面向带钢表面小目标缺陷检测的改进YOLOv7算法[J]. 合肥工业大学学报(自然科学版),2024,47(3):303-308,316.

    FAN Rong,MA Xiaolu. Improved YOLOv7 algorithm for small target defect detection on strip steel surface[J]. Journal of Hefei University of Technology(Natural Science),2024,47(3):303-308,316.
    [23] 韩崇,樊卫北,郭澳. 基于特征融合的毫米波雷达行为识别算法[J/OL]. 计算机科学:1-10[2024-03-12]. http://kns.cnki.net/kcms/detail/50.1075.TP.20240513.1347.011.html.

    HAN Chong,FAN Weibei,GUO Ao. Millimeter wave radar human activity recognition algorithm based on feature fusion [J/OL]. Computer Science:1-10[2024-03-12]. http://kns.cnki.net/kcms/detail/50.1075.TP.20240513.1347.011.html.
    [24] 彭垚潘,张荣芬,刘宇红,等. 融入特征交互与注意力的轻量化混凝土裂缝分割算法[J/OL]. 光电子·激光:1-11[2024-03-12]. http://kns.cnki.net/kcms/detail/12.1182.O4.20240428.1852.016.html.

    PENG Yaopan,ZHANG Rongfen,LIU Yuhong,et al. Lightweight concrete crack segmentation algorithm integrating feature interaction and attention[J/OL]. Journal of Optoelectronics·Laser:1-11[2024-03-12]. http://kns.cnki.net/kcms/detail/12.1182.O4.20240428.1852.016.html.
    [25] 韩康,战洪飞,余军合,等. 基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断[J]. 浙江大学学报(工学版),2024,58(6):1285-1295.

    HAN Kang,ZHAN Hongfei,YU Junhe,et al. Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion[J]. Journal of Zhejiang University(Engineering Science),2024,58(6):1285-1295.
    [26] 韩康,李敬兆,陶荣颖. 基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别[J]. 工矿自动化,2024,50(3):82-91.

    HAN Kang,LI Jingzhao,TAO Rongying. Recognition of unsafe behaviors of key position personnel in coal mines based on improved YOLOv7 and ByteTrack[J]. Journal of Mine Automation,2024,50(3):82-91.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  15
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-18
  • 修回日期:  2024-10-20
  • 网络出版日期:  2024-09-29

目录

    /

    返回文章
    返回