留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多因素耦合量化表征模型的冲击危险区域划分

贾海宾 刘爱鑫 张斌 付相超 蔡武

贾海宾,刘爱鑫,张斌,等. 基于多因素耦合量化表征模型的冲击危险区域划分[J]. 工矿自动化,2024,50(7):47-54, 97.  doi: 10.13272/j.issn.1671-251x.2024050015
引用本文: 贾海宾,刘爱鑫,张斌,等. 基于多因素耦合量化表征模型的冲击危险区域划分[J]. 工矿自动化,2024,50(7):47-54, 97.  doi: 10.13272/j.issn.1671-251x.2024050015
JIA Haibin, LIU Aixin, ZHANG Bin, et al. Impact hazard area classification based on multi factor coupled quantitative characterization model[J]. Journal of Mine Automation,2024,50(7):47-54, 97.  doi: 10.13272/j.issn.1671-251x.2024050015
Citation: JIA Haibin, LIU Aixin, ZHANG Bin, et al. Impact hazard area classification based on multi factor coupled quantitative characterization model[J]. Journal of Mine Automation,2024,50(7):47-54, 97.  doi: 10.13272/j.issn.1671-251x.2024050015

基于多因素耦合量化表征模型的冲击危险区域划分

doi: 10.13272/j.issn.1671-251x.2024050015
基金项目: 国家自然科学基金面上项目(52374101);国家重点研发计划项目(2022YFC3004603)。
详细信息
    作者简介:

    贾海宾(1986—),男,山东济宁人,工程师,硕士,从事采矿、冲击地压治理、安全管理等方面的工作,E-mail:XJLhaibin@163.com

    通讯作者:

    蔡武(1988—),男,湖南桃江人,教授,博士,博士研究生导师,主要从事冲击矿压与微震监测等方面的研究工作,E-mail: caiwu@cumt.edu.cn

  • 中图分类号: TD324

Impact hazard area classification based on multi factor coupled quantitative characterization model

  • 摘要: 针对现有冲击危险评价方法不能准确体现冲击危险因素影响下应力集中变化特征等问题,提出了基于多因素耦合量化表征模型的冲击危险区域划分方法。首先,根据地下煤层的地质条件、巷道分布、开采范围等实际情况,分析得出主要的冲击影响因素;其次,分别参考多因素叠加法和应力分析法,确定各类冲击影响因素的影响范围及相对应力集中系数;然后,基于煤岩体内部微元强度分布函数,构建冲击危险多因素耦合量化表征模型;最后,将冲击影响因素的影响范围及相对应力集中系数代入量化表征模型,得到煤层应力分布结果,根据应力分布结果进行冲击危险等级划分,得到冲击危险区域分布情况。以山东新巨龙能源有限责任公司3煤层为例,通过分析叠加断层、大巷和采空区等主要冲击危险因素引起的应力集中,制定合理的冲击危险等级划分标准,得到了3煤层冲击危险区域划分结果,并进行了现场验证。由评价工作完成前后发生的矿震事件可知,冲击震源主要集中在强冲击危险区域,这与区域划分结果较为吻合,从而验证了该方法能够有效地定量划分煤层冲击危险区域。

     

  • 图  1  复杂煤层数值化应力集中模型

    Figure  1.  Numerical stress concentration model for complex coal seams

    图  2  三轴加载下煤的冲击临界应力与单轴抗压强度之间的关系

    Figure  2.  Relationship between uniaxial compressive strength of coal and impact critical stress under three-axis loading

    图  3  3煤层断层发育

    Figure  3.  Fault development of No. 3 coal seam

    图  4  3煤层采深及采区布置

    Figure  4.  Mining depth and mining area layout of No. 3 coal seam

    图  5  3煤层在不同因素影响下应力、应力集中系数分布

    Figure  5.  Distribution of stress and stress concentration coefficient of No. 3 coal seam under different factors

    图  6  多因素叠加法分析结果

    Figure  6.  Analysis results of multi-factor superposition method

    图  7  震源位置

    Figure  7.  Source location

    图  8  震源反演结果

    Figure  8.  Source inversion results

    图  9  冲击事件造成的破坏及震源辐射

    Figure  9.  Damage caused by the impact event and source radiation

    表  1  本煤层发生过冲击地压的危险等级划分标准

    Table  1.   Classification standard of the danger grade of coal seams that have experienced rockburst

    危险等级 划分标准
    $ {F}_{j}<\dfrac{{R}_{{\mathrm{c}}}}{{\sigma }_{0}} $
    $ \dfrac{{R}_{{\mathrm{c}}}}{{\sigma }_{0}} $≤$ {F}_{j} $<$ \dfrac{2}{3}\left({F}_{{\mathrm{c}}}-\dfrac{{R}_{{\mathrm{c}}}}{{\sigma }_{0}}\right) $
    $ {F}_{j}\geqslant \dfrac{2}{3}\left({F}_{{\mathrm{c}}}-\dfrac{{R}_{{\mathrm{c}}}}{{\sigma }_{0}}\right) $
    下载: 导出CSV

    表  2  本煤层未发生过冲击地压的危险等级划分标准

    Table  2.   Classification standard of the harzard grade of coal seam without occurrence of rockburst

    危险等级 划分标准
    $ {R}_{\rm{c}} $<16 MPa $ {R}_{\rm{c}} $>20 MPa
    $ {\gamma }_{i}<\dfrac{{R}_{\rm{c}}}{{\sigma }_{0}} $ $ {\gamma }_{i}<\dfrac{{R}_{\rm{c}}}{{\sigma }_{0}} $
    $ \dfrac{{R}_{\rm{c}}}{{\sigma }_{0}} $≤$ {\gamma }_{i} $<$ \dfrac{90}{{\sigma }_{0}} $ $ \dfrac{{R}_{\rm{c}}}{{\sigma }_{0}} $≤$ {\gamma }_{i} $<$ \dfrac{70}{{\sigma }_{0}} $
    $ {\gamma }_{i}\geqslant\dfrac{90}{{\sigma }_{0}} $ $ {\gamma }_{i}\geqslant\dfrac{70}{{\sigma }_{0}} $
    下载: 导出CSV
  • [1] 窦林名. 采矿地球物理理论与技术[M]. 北京:科学出版社,2014.

    DOU Linming. Mining geophysical theory and technology[M]. Beijing:Science Press,2014.
    [2] 窦林名,何学秋. 冲击矿压防治理论与技术[M]. 徐州:中国矿业大学出版社,2001.

    DOU Linming,HE Xueqiu. Theory and technology of rock burst prevention[M]. Xuzhou:China University of Mining & Technology Press,2001.
    [3] 窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报,2022,47(1):152-171.

    DOU Linming,TIAN Xinyuan,CAO Anye,et al. Present situation and problems of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society,2022,47(1):152-171.
    [4] 姜福兴,冯宇,刘晔. 采场回采前冲击危险性动态评估方法研究[J]. 岩石力学与工程学报,2014,33(10):2101-2106.

    JIANG Fuxing,FENG Yu,LIU Ye. Dynamic evaluation method for rockburst risk before stopping[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(10):2101-2106.
    [5] 牟宗龙,窦林名,巩思园,等. 煤矿井下冲击矿压分区分级预测方法:CN103256073B[P]. 2015-07-29.

    MU Zonglong,DOU Linming,GONG Siyuan,et al. Prediction method for zoning and grading of rockburst in underground coal mines:CN103256073B[P]. 2015-07-29.
    [6] 窦林名,贺虎,何江,等. 冲击危险评价的相对应力集中系数叠加法[J]. 煤炭学报,2018,43(2):327-332.

    DOU Linming,HE Hu,HE Jiang,et al. New method of rockburst risk assessment using relative stress concentration factor superposition[J]. Journal of China Coal Society,2018,43(2):327-332.
    [7] 李许伟,窦林名,王占成,等. 工作面冲击矿压相对危险区划分的模糊层次综合评价方法[J]. 矿业安全与环保,2012,39(1):79-82. doi: 10.3969/j.issn.1008-4495.2012.01.027

    LI Xuwei,DOU Linming,WANG Zhancheng,et al. Fuzzy hierarchy comprehensive evaluation method for the division of relative danger zone of rock burst in working face[J]. Mining Safety & Environmental Protection,2012,39(1):79-82. doi: 10.3969/j.issn.1008-4495.2012.01.027
    [8] 姜福兴,舒凑先,王存文. 基于应力叠加回采工作面冲击危险性评价[J]. 岩石力学与工程学报,2015,34(12):2428-2435.

    JIANG Fuxing,SHU Couxian,WANG Cunwen. Impact risk appraisal of stope working faces based on stress superimposition[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(12):2428-2435.
    [9] 王爱文,王岗,代连朋,等. 基于临界应力指数法巷道冲击地压危险性评价[J]. 煤炭学报,2020,45(5):1626-1634.

    WANG Aiwen,WANG Gang,DAI Lianpeng,et al. Evaluation on the rock burst risks of roadway using critical stress index method[J]. Journal of China Coal Society,2020,45(5):1626-1634.
    [10] 易恩兵,牟宗龙,窦林名,等. 冲击矿压危险性的模糊综合评价研究[J]. 煤炭工程,2011,43(6):70-73. doi: 10.3969/j.issn.1671-0959.2011.06.029

    YI Enbing,MU Zonglong,DOU Linming,et al. Study on fuzzy comprehensive evaluation on mine pressure bumping dangers[J]. Coal Engineering,2011,43(6):70-73. doi: 10.3969/j.issn.1671-0959.2011.06.029
    [11] 张志镇,高峰,许爱斌,等. 冲击地压危险性的集对分析评价模型[J]. 中国矿业大学学报,2011,40(3):379-384.

    ZHANG Zhizhen,GAO Feng,XU Aibin,et al. Model for estimating rock burst risk in a coal mine based on set pair analysis[J]. Journal of China University of Mining & Technology,2011,40(3):379-384.
    [12] 贺虎,郑有雷,张雄,等. 基于动静应力分析的复杂工作面冲击危险评价[J]. 煤炭科学技术,2019,47(7):265-270.

    HE Hu,ZHENG Youlei,ZHANG Xiong,et al. Rock burst risk evaluation based on dynamic-static stress analysis in complex working face[J]. Coal Science and Technology,2019,47(7):265-270.
    [13] 高家明,夏永学,杨光宇,等. 复合构造区域煤岩体应力分布及冲击地压危险性评价[J]. 工矿自动化,2021,47(3):14-19,26.

    GAO Jiaming,XIA Yongxue,YANG Guangyu,et al. The stress distribution of coal and rock mass and the risk evaluation of rock burst in the composite structure area[J]. Industry and Mine Automation,2021,47(3):14-19,26.
    [14] 徐隽松,潘鹏志,陈建强,等. 基于地应力反演的褶曲区煤层冲击危险性评价研究[J]. 煤炭科学技术,2023,51(9):35-45. doi: 10.12438/cst.2022-0827

    XU Junsong,PAN Pengzhi,CHEN Jianqiang,et al. Study on burst risk assessment of coal seam in folded area based on pre-mining stress back analysis[J]. Coal Science and Technology,2023,51(9):35-45. doi: 10.12438/cst.2022-0827
    [15] 韩刚,解嘉豪,秦喜文,等. 基于图像识别技术的冲击地压危险区域智能化评价方法[J]. 工矿自动化,2023,49(12):77-86,93.

    HAN Gang,XIE Jiahao,QIN Xiwen,et al. Intelligent assessment method for rockburst hazard areas based on image recognition technology[J]. Journal of Mine Automation,2023,49(12):77-86,93.
    [16] 周涛,张广宁,周广飞. 基于冲击风险量化评估模型的采掘方案优化案例研究[J]. 煤炭工程,2023,55(5):8-13.

    ZHOU Tao,ZHANG Guangning,ZHOU Guangfei. Case study of extraction plan optimization based on quantitative rock burst risk assessment model[J]. Coal Engineering,2023,55(5):8-13.
    [17] 杨圣奇,徐卫亚,韦立德,等. 单轴压缩下岩石损伤统计本构模型与试验研究[J]. 河海大学学报(自然科学版),2004,32(2):200-203. doi: 10.3321/j.issn:1000-1980.2004.02.019

    YANG Shengqi,XU Weiya,WEI Lide,et al. Statistical constitutive model for rock damage under uniaxial compression and its experimental study[J]. Journal of Hohai University (Natural Sciences),2004,32(2):200-203. doi: 10.3321/j.issn:1000-1980.2004.02.019
    [18] 曹文贵,方祖烈,唐学军. 岩石损伤软化统计本构模型之研究[J]. 岩石力学与工程学报,1998,17(6):628-633. doi: 10.3321/j.issn:1000-6915.1998.06.004

    CAO Wengui,FANG Zulie,TANG Xuejun. A study of statistical constitutive model for soft and damage rocks[J]. Chinese Journal of Rock Mechanics and Engineering,1998,17(6):628-633. doi: 10.3321/j.issn:1000-6915.1998.06.004
    [19] 吴政,张承娟. 单向荷载作用下岩石损伤模型及其力学特性研究[J]. 岩石力学与工程学报,1996,15(1):55-61. doi: 10.3321/j.issn:1000-6915.1996.01.008

    WU Zheng,ZHANG Chengjuan. Investigation of rock damage model,and its mechanical behaviour[J]. Chinese Journal of Rock Mechanics and Engineering,1996,15(1):55-61. doi: 10.3321/j.issn:1000-6915.1996.01.008
    [20] 唐春安. 岩石破裂过程中的灾变[M]. 北京:煤炭工业出版社,1993.

    TANG Chun'an. Catastrophe in rock unstable failure[M]. Beijing:China Coal Industry Publishing House,1993.
    [21] 蔡武,陆强,巩思园,等. 一种基于理论与数据驱动融合的冲击地压风险评估方法:CN114219211A[P]. 2022-03-22.

    CAI Wu,LU Qiang,GONG Siyuan,et al. A risk assessment method for rockburst based on the fusion of theory and data-driven approach:CN114219211A[P]. 2022-03-22.
    [22] 蔡武. 断层型冲击矿压的动静载叠加诱发原理及其监测预警研究[D]. 徐州:中国矿业大学,2015.

    CAI Wu. Fault rockburst induced by static and dynamic loads superposition and its monitoring and warning[D]. Xuzhou:China University of Mining and Technology,2015.
    [23] SONG Jiefang,LU Caiping,SONG Chunhui,et al. A source mechanism of the mining-triggered tremor in the Xinjulong Coal Mine revealed by the Bayesian inversion and 3D simulation[J]. Rock Mechanics and Rock Engineering,2023(12):8591-8606.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  47
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 修回日期:  2024-07-20
  • 网络出版日期:  2024-08-02

目录

    /

    返回文章
    返回