Features of adsorption pore structure in high-rank coal and its influence on methane adsorption capability
-
摘要: 孔隙结构对煤层吸附甲烷的能力有显著影响,但目前对高阶煤吸附孔结构特征及其对甲烷吸附能力的影响研究较少。以贵州兴安煤业有限公司糯东煤矿高阶煤样为研究对象,采用低温N2吸附和低温CO2吸附试验,结合分形理论研究了高阶煤吸附孔的孔隙结构特征,并通过高压等温甲烷吸附试验,分析了煤储层物性、孔隙结构特征和分形维数对甲烷吸附能力的影响。结果表明:① 高阶煤储层孔隙形态较为单一,多数为两端开放的平行板孔和狭缝型孔,微孔在煤的孔隙结构中占主导地位,其孔体积和孔比表面积占比均大于98%,为气体的富集提供了空间。② 以不同孔径段的孔体积占比为权重计算高阶煤孔隙的综合分形维数,微孔分形维数在综合分形维数中占主导地位;煤样孔隙结构具有明显的分形特征,孔隙非均质性较强。③ Langmuir模型能很好地描述高阶煤的吸附行为,煤储层物性、孔隙结构和分形维数对甲烷吸附能力影响显著,Langmuir体积与最大镜质体反射率、镜质组含量、灰分含量和水分含量呈线性正相关关系,与惰质组含量呈线性负相关关系;Langmuir体积与吸附孔的孔比表面积和孔体积均呈线性正相关关系,Langmuir体积与分形维数呈弱线性关系。研究结果可为黔西南地区高阶煤层气勘探开发及煤矿瓦斯灾害防治提供理论指导。Abstract: The pore structure has a significant impact on the capability of coal seams to adsorb methane. But there is currently limited research on the features of adsorption pore structure in high-rank coal and its influence on methane adsorption capability. Taking the high-rank coal samples from Nuodong Coal Mine of Guizhou Xing'an Coal Industry Co., Ltd. as the research object, low-temperature N2 adsorption and low-temperature CO2 adsorption experiments are conducted. Combined with fractal theory, this paper studies the pore structure features of high-rank coal adsorption pores. Through high-pressure isothermal methane adsorption experiments, the influence of coal reservoir properties, pore structure features, and fractal dimension on methane adsorption capability is analyzed. The results show the following points. ① The pore morphology of high-rank coal reservoirs is relatively simple, mostly consisting of parallel plate pores and narrow slit pores with open ends. Micro pores dominate the pore structure of coal, with pore volume and pore specific surface area accounting for more than 98%, providing space for gas enrichment. ② The method calculates the comprehensive fractal dimension of high-rank coal pores based on the proportion of pore volume in different aperture segments, with micropore fractal dimension dominating the comprehensive fractal dimension. The pore structure of coal samples has obvious fractal features and strong heterogeneity of pores. ③ The Langmuir model can describe the adsorption behavior of high-rank coal. The physical properties, pore structure, and fractal dimension of coal reservoirs have a significant impact on methane adsorption capability. Langmuir volume is linearly positively correlated with maximum vitrinite reflectance, vitrinite content, ash content, and moisture content. It is linearly negatively correlated with inertinite content. The Langmuir volume is linearly positively correlated with the pore specific surface area and pore volume of the adsorption pores. The Langmuir volume is weakly linearly correlated with the fractal dimension. The research results can provide theoretical guidance for the exploration and development of high-rank coalbed methane and the prevention and control of coal mine methane disasters in southwestern Guizhou.
-
Key words:
- high-rank coal /
- adsorption pore /
- pore structure /
- gas adsorption /
- pore size distribution /
- fractal features
-
表 1 煤样基础参数
Table 1. Basic parameters of coal samples
煤样 Ro,max/% 镜质组/% 惰质组/% 壳质组/% 水分/% 灰分/% 挥发分/% 固定碳/% 煤类 糯东1号 2.57 87.00 12.80 0.20 0.64 14.74 8.30 77.60 无烟煤 糯东2号 2.68 93.00 6.80 0.20 0.88 28.83 11.81 61.99 贫煤 糯东3号 2.62 89.00 10.70 0.30 0.58 14.37 8.54 77.79 无烟煤 表 2 低温N2吸附试验煤样孔比表面积分布特征
Table 2. Distribution features of pore specific surface area of coal samples for low temperature N2 adsorption experiment
煤样 平均孔径/nm BET孔比表面积/(m2·g−1) 孔比表面积/(m2·g−1) 孔比表面积占比/% <10 nm 10~100 nm >100 nm <10 nm 10~100 nm >100 nm 糯东1号 7.949 1.293 1.145 0.147 0.001 88.55 11.37 0.08 糯东2号 6.057 1.695 1.575 0.118 0.002 92.92 6.96 0.12 糯东3号 9.700 0.534 0.450 0.083 0.001 84.27 15.54 0.19 表 3 低温N2吸附试验煤样孔体积分布特征
Table 3. Distribution features of pore volume of coal samples for low temperature N2 adsorption experiment
煤样 BJH孔体积/(10−3 cm3·g−1) 孔体积/(10−3 cm3·g−1) 孔体积占比/% <10 nm 10~100 nm >100 nm <10 nm 10~100 nm >100 nm 糯东1号 2.373 1.208 1.132 0.033 50.91 47.70 1.39 糯东2号 2.232 1.320 0.850 0.062 59.14 38.08 2.78 糯东3号 1.245 0.452 0.768 0.025 36.31 61.68 2.01 表 4 低温CO2吸附试验煤样孔隙结构参数
Table 4. Pore structure parameters of coal samples for low temperature CO2 adsorption experiment
煤样 孔比表面积/
(m2·g−1)孔体积/
(10−3 cm3·g−1)峰值点
孔径/nm糯东1号 190.520 61.900 0.524 糯东2号 146.755 51.415 0.548 糯东3号 146.943 48.145 0.599 表 5 不同煤样吸附孔的孔隙结构参数
Table 5. Pore structure parameters of adsorption pores of different coal samples
煤样 孔体积/(10−3 cm3·g−1) 总孔体积/
(10−3 cm3·g−1)孔比表面积/(m2·g−1) 总孔比表面积/
(m2·g−1)0.3~1.5 nm 1.5~10 nm 10~100 nm 0.3~1.5 nm 1.5~10 nm 10~100 nm 糯东1号 61.900 1.208 1.132 64.240 190.520 1.145 0.147 191.812 糯东2号 51.415 1.320 0.850 53.585 146.755 1.575 0.118 148.448 糯东3号 48.145 0.452 0.768 49.365 146.943 0.450 0.083 147.476 表 6 不同煤样的分形维数
Table 6. Fractal dimension of different coal samples
煤样 10~100 nm孔径段(低温N2吸附) 1.5~10 nm孔径段(低温N2吸附) 0.3~1.5 nm孔径段(低温CO2吸附) 综合分形维数Dz D1 R2 D2 R2 D3 R2 糯东1号 2.489 0.825 2.651 0.995 2.453 0.998 2.457 糯东2号 2.562 0.876 2.758 0.987 2.476 0.999 2.483 糯东3号 2.647 0.676 2.506 0.996 2.492 0.999 2.494 表 7 甲烷吸附拟合结果
Table 7. Fitting results of methane adsorption
煤样 Ro,amx/% VL/(cm3·g−1) PL/MPa R2 糯东1号 2.57 25.534 1.703 0.995 糯东2号 2.68 32.590 1.371 0.994 糯东3号 2.62 28.314 1.198 0.996 -
[1] 徐林,袁梅,杨萌萌,等. 贵州省突出煤层孔隙分形特征研究[J]. 工矿自动化,2017,43(4):32-36.XU Lin,YUAN Mei,YANG Mengmeng,et al. Research on pore fractal characteristics of outburst coal seam in Guizhou Province[J]. Industry and Mine Automation,2017,43(4):32-36. [2] LIU Xiaolei,WEI Jianping,WEI Guoying,et al. Combined control of fluid adsorption capacity and initial permeability on coal permeability[J]. International Journal of Coal Science & Technology,2022,9(1). DOI: 10.1007/s40789-022-00545-6. [3] 贾男. 煤孔隙结构对瓦斯解吸−扩散−渗流过程的影响[J]. 工矿自动化,2024,50(3):122-130.JIA Nan. The influence of coal pore structure on gas desorption-diffusion-seepage process[J]. Journal of Mine Automation,2024,50(3):122-130. [4] 桑树勋,韩思杰,刘世奇,等. 高煤阶煤层气富集机理的深化研究[J]. 煤炭学报,2022,47(1):388-403.SANG Shuxun,HAN Sijie,LIU Shiqi,et al. Comprehensive study on the enrichment mechanism of coalbed methane in high rank coal reservoirs[J]. Journal of China Coal Society,2022,47(1):388-403. [5] 刘纪坤,任棒,王翠霞. 考虑煤基质压缩效应的煤全孔径分布特征研究[J]. 工矿自动化,2022,48(2):125-130.LIU Jikun,REN Bang,WANG Cuixia. Study on coal full pore aperture distribution characteristics considering coal matrix compression effect[J]. Industry and Mine Automation,2022,48(2):125-130. [6] 李树刚,周雨璇,胡彪,等. 低阶煤吸附孔结构特征及其对甲烷吸附性能影响[J]. 煤田地质与勘探,2023,51(2):127-136. doi: 10.12363/issn.1001-1986.22.09.0743LI Shugang,ZHOU Yuxuan,HU Biao,et al. Structural characteristics of adsorption pores in low-rank coals and their effects on methane adsorption performance[J]. Coal Geology & Exploration,2023,51(2):127-136. doi: 10.12363/issn.1001-1986.22.09.0743 [7] 张少锋,李雅阁,秦兴林. 沁水盆地煤储层孔隙分形特征及其对瓦斯吸附的影响[J]. 煤炭科学技术,2019,47(3):163-167.ZHANG Shaofeng,LI Yage,QIN Xinglin. Pore fractal characteristic of coal reservoirs in Qinshui Basin and its influence on methane adsorption property[J]. Coal Science and Technology,2019,47(3):163-167. [8] 王俏,王兆丰,代菊花,等. 深部煤层无烟煤甲烷吸附特性研究[J]. 煤矿安全,2021,52(6):28-33.WANG Qiao,WANG Zhaofeng,DAI Juhua,et al. Study on methane adsorption characteristics of anthracite in deep coal seam[J]. Safety in Coal Mines,2021,52(6):28-33. [9] 任少魁,秦玉金,贾宗凯,等. 不同煤阶煤孔隙结构分形表征及其对甲烷吸附特性的影响[J]. 煤矿安全,2023,54(5):175-181.REN Shaokui,QIN Yujin,JIA Zongkai,et al. Fractal characterization of pore structure of coal with different ranks and its effect on methane adsorption characteristics[J]. Safety in Coal Mines,2023,54(5):175-181. [10] 曾平,张东明,严先华,等. 原生煤和构造煤对甲烷的吸附扩散特性研究[J]. 矿业安全与环保,2023,50(4):36-41.ZENG Ping,ZHANG Dongming,YAN Xianhua,et al. Study on gas adsorption and diffusion characteristics of intact coal and tectonic coal[J]. Mining Safety & Environmental Protection,2023,50(4):36-41. [11] 贾永勇,程媛圆,殷紫妤. 不同煤阶煤体甲烷吸附特性的对比分析[J]. 陕西煤炭,2023,42(3):37-42. doi: 10.3969/j.issn.1671-749X.2023.03.008JIA Yongyong,CHENG Yuanyuan,YIN Ziyu. Comparative analysis of methane adsorption characteristics of different coal ranks coal body[J]. Shaanxi Coal,2023,42(3):37-42. doi: 10.3969/j.issn.1671-749X.2023.03.008 [12] 吴旭坤. 构造应力区松软围岩巷道控制技术研究[D]. 贵阳:贵州大学,2021.WU Xukun. Study on roadway control technology of soft surrounding rock in structural stress zone[D]. Guiyang:Guizhou University,2021. [13] 翦非帆. 无烟煤孔隙结构对甲烷吸附解吸特征的影响研究[D]. 徐州:中国矿业大学,2021.JIAN Feifan. Effect of pore structure of anthracite on adsorption and desorption characteristics of methane[D]. Xuzhou:China University of Mining and Technology,2021. [14] 张鹏,张欣,王昆. 基于低温氮吸附法的商丘地区高阶煤孔隙特征研究[J]. 中国煤炭地质,2023,35(11):39-45. doi: 10.3969/j.issn.1674-1803.2023.11.06ZHANG Peng,ZHANG Xin,WANG Kun. Study on pore characteristics of high rank coal in Shangqiu area based on low-temperature nitrogen adsorption method[J]. Coal Geology of China,2023,35(11):39-45. doi: 10.3969/j.issn.1674-1803.2023.11.06 [15] LI Yunbo,LIU Wen,SONG Dangyu,et al. Full-scale pore characteristics in coal and their influence on the adsorption capacity of coalbed methane[J]. Environmental Science and Pollution Research,2023,30(28):72187-72206. doi: 10.1007/s11356-023-27298-2 [16] THOMMES M,KANEKO K,NEIMARK A V,et al. Physisorption of gases,with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry,2015,87(9/10):1051-1069. [17] ZHAO Junlong,XU Hao,TANG Dazhen,et al. A comparative evaluation of coal specific surface area by CO2 and N2 adsorption and its influence on CH4 adsorption capacity at different pore sizes[J]. Fuel,2016,183:420-431. doi: 10.1016/j.fuel.2016.06.076 [18] ZHANG Songhang,TANG Shuheng,TANG Dazhen,et al. Determining fractal dimensions of coal pores by FHH model:problems and effects[J]. Journal of Natural Gas Science and Engineering,2014,21:929-939. doi: 10.1016/j.jngse.2014.10.018 [19] WANG Zhenyang,CHENG Yuanping,QI Yuxiao,et al. Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption[J]. Powder Technology,2019,350:15-25. doi: 10.1016/j.powtec.2019.03.030 [20] YI Minghao,CHENG Yuanping,WANG Chenghao,et al. Effects of composition changes of coal treated with hydrochloric acid on pore structure and fractal characteristics[J]. Fuel,2021,294. DOI: 10.1016/j.fuel.2021.120506. [21] SONG Yu,JIANG Bo,LI Fengli,et al. Structure and fractal characteristic of micro- and meso-pores in low,middle-rank tectonic deformed coals by CO2 and N2 adsorption[J]. Microporous and Mesoporous Materials,2017,253:191-202. doi: 10.1016/j.micromeso.2017.07.009