留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进YOLOv8n的井下人员安全帽佩戴检测

王琦 夏鲁飞 陈天明 韩鸿胤 王亮

王琦,夏鲁飞,陈天明,等. 基于改进YOLOv8n的井下人员安全帽佩戴检测[J]. 工矿自动化,2024,50(9):124-129.  doi: 10.13272/j.issn.1671-251x.2024040054
引用本文: 王琦,夏鲁飞,陈天明,等. 基于改进YOLOv8n的井下人员安全帽佩戴检测[J]. 工矿自动化,2024,50(9):124-129.  doi: 10.13272/j.issn.1671-251x.2024040054
WANG Qi, XIA Lufei, CHEN Tianming, et al. Detection of underground personnel safety helmet wearing based on improved YOLOv8n[J]. Journal of Mine Automation,2024,50(9):124-129.  doi: 10.13272/j.issn.1671-251x.2024040054
Citation: WANG Qi, XIA Lufei, CHEN Tianming, et al. Detection of underground personnel safety helmet wearing based on improved YOLOv8n[J]. Journal of Mine Automation,2024,50(9):124-129.  doi: 10.13272/j.issn.1671-251x.2024040054

基于改进YOLOv8n的井下人员安全帽佩戴检测

doi: 10.13272/j.issn.1671-251x.2024040054
基金项目: 国家自然科学基金项目(51974170)。
详细信息
    作者简介:

    王琦(2000—),男,山东泰安人,硕士研究生,研究方向为煤矿智能化,E-mail:1365644991@qq.com

  • 中图分类号: TD67

Detection of underground personnel safety helmet wearing based on improved YOLOv8n

  • 摘要: 针对现有井下人员安全帽佩戴检测方法未考虑遮挡、目标较小、背景干扰等因素,存在检测精度差及模型不够轻量化等问题,提出一种改进YOLOv8n模型,并将其应用于井下人员安全帽佩戴检测。在颈部网络中加入P2小目标检测层,提高模型对小目标的检测能力,更好地捕捉安全帽目标细节;在主干网络中添加卷积块注意力模块(CBAM)提取图像关键特征,减少背景信息的干扰;将CIoU损失函数替换为WIoU损失函数,提升模型对检测目标的定位能力;采用轻量化共享卷积检测头(LSCD),通过共享参数的方式降低模型复杂度,并将卷积中的归一化层替换为群组归一化(GN),在尽可能保证精度的同时实现模型轻量化。实验结果表明:与YOLOv8n模型相比,改进YOLOv8n模型在交并比阈值为0.5时的平均精度均值(mAP@50)提升了1.8%,参数量减少了23.8%,计算量下降了10.4%,模型大小减小了17.2%;改进YOLOv8n模型检测精度高于SSD,YOLOv3−tiny,YOLOv5n,YOLOv7和YOLOv8n,模型复杂度仅高于YOLOv5n,较好地平衡了模型检测精度与复杂度;在井下复杂场景下,改进YOLOv8n模型能够实现对井下人员安全帽佩戴的准确检测,改善了漏检问题。

     

  • 图  1  改进YOLOv8n模型结构

    Figure  1.  Improved YOLOv8n model structure

    图  2  改进YOLOv8n的检测层

    Figure  2.  Detection layer of improved YOLOv8n

    图  3  CBAM结构

    Figure  3.  Convolutional block attention module (CBAM) structure

    图  4  LSCD结构

    Figure  4.  Lightweight shared convolutional detection head (LSCD) structure

    图  5  加入CBAM前后热力图对比

    Figure  5.  Comparison of heat maps before and after adding CBAM

    图  6  YOLOv8n改进前后检测效果对比

    Figure  6.  Comparison of detection results before and after YOLOv8n improvement

    表  1  不同注意力机制对比实验结果

    Table  1.   Comparison of experimental results with different attention mechanisms

    注意力机制精确率召回率mAP@50/%
    SE0.9120.87394.0
    EMA0.9020.87493.8
    CA0.9200.86694.1
    CBAM0.9100.88194.3
    下载: 导出CSV

    表  2  不同损失函数对比实验结果

    Table  2.   Comparison of experimental results with different loss functions

    损失函数精确率召回率mAP@50/%
    CIoU0.9100.88194.3
    EIoU0.9140.87894.2
    SIoU0.9090.87294.1
    GIoU0.9090.88494.2
    WIoU0.9170.89495.1
    下载: 导出CSV

    表  3  消融实验结果

    Table  3.   Ablation experiment results

    P2 CBAM WIoU LSCD mAP@50/% 参数量/
    106
    浮点运算
    数/109
    模型大
    小/MiB
    × × × × 93.0 3.15 8.7 6.11
    × × × 93.8 3.35 17.2 6.11
    × × × 93.3 3.22 8.7 6.24
    × × × 93.4 3.15 8.7 6.11
    × 95.1 3.42 17.2 6.24
    94.8 2.40 7.8 5.07
    下载: 导出CSV

    表  4  不同目标检测模型对比实验结果

    Table  4.   Comparison of experimental results for different object detection models

    模型 mAP@50/% 参数量/106 浮点运算数/109 模型大小/MiB
    SSD 69.6 23.61 60.8 503.67
    YOLOv3−tiny 88.9 8.67 12.9 17.40
    YOLOv5n 85.6 1.77 4.2 3.78
    YOLOv7 94.1 37.19 105.1 74.80
    YOLOv8n 93.0 3.15 8.7 6.11
    改进YOLOv8n 94.8 2.40 7.8 5.07
    下载: 导出CSV
  • [1] OSUNMAKINDE I O. Towards safety from toxic gases in underground mines using wireless sensor networks and ambient intelligence[J]. International Journal of Distributed Sensor Networks,2013,9(2). DOI: 10.1155/2013/159273.
    [2] LIU Wei,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]. The 14th European Conference on Computer Vision,Amsterdam,2016:21-37.
    [3] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
    [4] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition,Columbus,2014:580-587.
    [5] 赵红成,田秀霞,杨泽森,等. 改进YOLOv3的复杂施工环境下安全帽佩戴检测算法[J]. 中国安全科学学报,2022,32(5):194-200.

    ZHAO Hongcheng,TIAN Xiuxia,YANG Zesen,et al. Safety helmet wearing detection algorithm in complex construction environment based on improved YOLOv3[J]. China Safety Science Journal,2022,32(5):194-200.
    [6] FU Chuan,WANG Rongxin. Research on safety helmet wearing YOLO-V3 detection technology improvement in mine environment[J]. Journal of Physics:Conference Series,2019,1345(4). DOI: 10.1088/1742-6596/1345/4/042045.
    [7] 李熙尉,孙志鹏,王鹏,等. 基于YOLOv5s改进的井下人员和安全帽检测算法研究[J]. 煤,2023,32(3):22-25. doi: 10.3969/j.issn.1005-2798.2023.03.006

    LI Xiwei,SUN Zhipeng,WANG Peng,et al. Research on underground personnel and safety helmet detection algorithm based on YOLOv5s improvement[J]. Coal,2023,32(3):22-25. doi: 10.3969/j.issn.1005-2798.2023.03.006
    [8] 李凤英,罗超. 基于深度学习的矿山作业安全帽穿戴规范性识别算法[J]. 有色金属(矿山部分),2023,75(4):7-13. doi: 10.3969/j.issn.1671-4172.2023.04.002

    LI Fengying,LUO Chao. Normative recognition algorithm for safety helmet wearing in mining operations based on deep learning[J]. Nonferrous Metals (Mining Section),2023,75(4):7-13. doi: 10.3969/j.issn.1671-4172.2023.04.002
    [9] 雷帮军,余翱,余快. 基于YOLOv8s改进的小目标检测算法[J]. 无线电工程,2024,54(4):857-870. doi: 10.3969/j.issn.1003-3106.2024.04.009

    LEI Bangjun,YU Ao,YU Kuai. Small object detection algorithm based on improved YOLOv8s[J]. Radio Engineering,2024,54(4):857-870. doi: 10.3969/j.issn.1003-3106.2024.04.009
    [10] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]. European Conference on Computer Vision,Munich,2018:3-19.
    [11] ZHENG Zhaohui,WANG Ping,REN Dongwei,et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics,2022,52(8):8574-8586. doi: 10.1109/TCYB.2021.3095305
    [12] TONG Zanjia,CHEN Yuhang,XU Zewei,et al. Wise-IoU:bounding box regression loss with dynamic focusing mechanism[EB/OL]. [2024-04-27]. https://arxiv.org/abs/2301.10051.
    [13] 陈伟,江志成,田子建,等. 基于YOLOv8的煤矿井下人员不安全动作检测算法[J/OL]. 煤炭科学技术:1-19[2024-04-14]. http://kns.cnki.net/kcms/detail/11.2402.td.20240322.1343.003.html.

    CHEN Wei,JIANG Zhicheng,TIAN Zijian,et al. Unsafe action detection algorithm of underground personnel in coal mine based on YOLOv8[J/OL]. Coal Science and Technology:1-19[2024-04-14]. http://kns.cnki.net/kcms/detail/11.2402.td.20240322.1343.003.html.
    [14] TIAN Zhi,SHEN Chunhua,CHEN Hao,et al. FCOS:a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(4):1922-1933.
    [15] YANG Wenjuan,ZHANG Xuhui,MA Bing,et al. An open dataset for intelligent recognition and classification of abnormal condition in longwall mining[J]. Scientific Data,2023,10(1). DOI: 10.1038/s41597-023-02322-9.
    [16] HU Jie,SHEN Li,SUN Gang. Squeeze-and-excitation networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:7132-7141.
    [17] OUYANG Daliang,HE Su,ZHANG Guozhong,et al. Efficient multi-scale attention module with cross-spatial learning[C]. IEEE International Conference on Acoustics,Speech and Signal Processing,Rhodes Island,2023:1-5.
    [18] HOU Qibin,ZHOU Daquan,FENG Jiashi. Coordinate attention for efficient mobile network design[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:13708-13717.
    [19] ZHANG Yifan,REN Weiqiang,ZHANG Zhang,et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing,2022,506:146-157. doi: 10.1016/j.neucom.2022.07.042
    [20] GEVORGYAN Z. SIoU loss:more powerful learning for bounding box regression[EB/OL]. [2024-04-29]. https://doi.org/10.48550/arXiv.2205.12740.
    [21] REZATOFIGHI H,TSOI N,GWAK J,et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Long Beach,2019:658-666.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  39
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-17
  • 修回日期:  2024-09-23
  • 网络出版日期:  2024-09-14

目录

    /

    返回文章
    返回