留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合钻孔地质信息的煤岩图像识别方法

李季 马潇锋 吴洁琪 强旭博 武荔阳 闫博 董继辉 陈朝森

李季,马潇锋,吴洁琪,等. 融合钻孔地质信息的煤岩图像识别方法[J]. 工矿自动化,2024,50(8):38-43, 68.  doi: 10.13272/j.issn.1671-251x.2024040048
引用本文: 李季,马潇锋,吴洁琪,等. 融合钻孔地质信息的煤岩图像识别方法[J]. 工矿自动化,2024,50(8):38-43, 68.  doi: 10.13272/j.issn.1671-251x.2024040048
LI Ji, MA Xiaofeng, WU Jieqi, et al. Coal-rock image recognition method integrating drilling geological information[J]. Journal of Mine Automation,2024,50(8):38-43, 68.  doi: 10.13272/j.issn.1671-251x.2024040048
Citation: LI Ji, MA Xiaofeng, WU Jieqi, et al. Coal-rock image recognition method integrating drilling geological information[J]. Journal of Mine Automation,2024,50(8):38-43, 68.  doi: 10.13272/j.issn.1671-251x.2024040048

融合钻孔地质信息的煤岩图像识别方法

doi: 10.13272/j.issn.1671-251x.2024040048
基金项目: 陕西高校青年创新团队项目(陕教函〔2022〕943号)。
详细信息
    作者简介:

    李季(1992—),男,陕西汉中人,副教授,硕士研究生导师,博士,主要研究方向为巷道矿压理论及围岩控制、巷道快速与智能掘进,E-mail:liji@xust.edu.cn

    通讯作者:

    马潇锋(1993—),男,山西长治人,硕士研究生,主要研究方向为地下岩体特性智能感知、掘进装备智能控制,E-mail:xmf5050@outlook.com

  • 中图分类号: TD67

Coal-rock image recognition method integrating drilling geological information

  • 摘要: 当前应用于煤岩图像识别的深度卷积神经网络模型存在体积庞大、计算过程冗杂等问题,难以满足实时检测要求,且对低照度、高粉尘等复杂环境适应性差。针对上述问题,提出了一种融合钻孔地质信息的煤岩图像识别方法。首先,通过改进的谱残差显著性检测(ISRSD)算法增强煤岩图像质量,有效减弱复杂环境对煤岩图像特征造成的不利影响;然后,使用加入注意力机制的VGG(AVGG)深度卷积神经网络模型——在VGG的基础上进行剪枝、加入卷积注意力模块(CBAM)和引入自适应学习率调整策略,高效提取煤岩图像特征;最后,利用贝叶斯模型融合煤岩图像特征和由钻孔地质柱状图获取的钻孔地质信息,提升煤岩分类的准确性和鲁棒性。实验结果表明,经ISRSD算法增强后的图像目标更突出,色彩失真程度更低,且边缘、纹理等图像特征保留相对完整; AVGG模型的准确率与VGG模型相当,但平均推理时间、参数量及模型大小分别仅为VGG模型的15.61%,33.44%及33.40%;与仅使用AVGG模型识别煤岩图像相比,利用贝叶斯模型融合钻孔地质信息后,准确率提高了1.85%,达97.31%。

     

  • 图  1  融合钻孔地质信息的煤岩图像识别方法流程

    Figure  1.  Process of coal-rock image recognition method integrating drilling geological information

    图  2  ISRSD算法流程

    Figure  2.  Improved spectral residual saliency detection(ISRSD) algorithm flow

    图  3  AVGG模型结构

    Figure  3.  Attentional visual geometry group(AVGG) model structure

    图  4  自适应学习率调整策略

    Figure  4.  Adaptive learning rate adjustment strategy

    图  5  钻孔地质柱状图

    Figure  5.  Borehole geologic column

    图  6  不同显著性检测算法增强效果对比

    Figure  6.  Comparison of enhancement effects of different saliency detection algorithms

    图  7  不同显著性检测算法下AVGG模型的准确率

    Figure  7.  Accuracy of attentional visual geometry group(AVGG) model under different saliency detection algorithms

    图  8  融合钻孔地质信息前后煤岩识别准确率对比

    Figure  8.  Comparison of coal-rock recognition accuracy before and after fusion borehole geological information

    表  1  数据集扩充及类别均衡前后样本数量

    Table  1.   Sample size before and after data set augmentation and category balancing

    类别数据集扩充及类别
    均衡前样本数/张
    数据集扩充及类别
    均衡后样本数/张
    砂岩3371 515
    砾岩961 344
    泥岩3691 348
    煤炭3601 440
    页岩821 394
    下载: 导出CSV

    表  2  不同模型评价指标结果对比

    Table  2.   Comparison of evaluation index results of different models

    模型 准确率/% 单个样本
    平均推理时间/ms
    参数量/106 模型大小
    /MiB
    GoogLeNet 89.65 68.49 5.981 24
    VGG 93.79 117.65 128.810 515
    SVGG 83.72 18.86 43.081 172
    AVGG 91.33 18.36 43.084 172
    下载: 导出CSV

    表  3  不同显著性检测算法耗时对比

    Table  3.   Comparison of time consumption of different saliency detection algorithms

    算法单个样本耗时/ms
    ISRSD7.9
    FT5.5
    LC15.9
    HC194.3
    下载: 导出CSV
  • [1] 王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357.

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
    [2] 王伟,李擎,张德政,等. 基于深度学习的矿石图像处理研究综述[J]. 工程科学学报,2023,45(4):621-631.

    WANG Wei,LI Qing,ZHANG Dezheng,et al. A survey of ore image processing based on deep learning[J]. Chinese Journal of Engineering,2023,45(4):621-631.
    [3] 杨健健,张强,王超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995-3005.

    YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society,2020,45(8):2995-3005.
    [4] 陈浜. 基于视觉计算的煤岩识别方法研究[D]. 北京:中国矿业大学(北京),2018.

    CHEN Bang. Methodological studies of coal-rock recognition through visual computing[D]. Beijing:China University of Mining & Technology-Beijing,2018.
    [5] 张云,童亮,来兴平,等. 基于机器视觉的煤尘环境下掘进空间煤岩界面感知与精准识别[J]. 煤炭学报,2024,49(7):3276-3290.

    ZHANG Yun,TONG Liang,LAI Xingping,et al. Coal-rock interface perception and accurate recognition in heading face under coal dust environment based on machine vision[J]. Journal of China Coal Society,2024,49(7):3276-3290.
    [6] 王建才,李瑾,李志军,等. 基于改进 YOLOv5 的煤岩图像检测识别研究[J]. 煤矿机械,2022,43(9):204-208.

    WANG Jiancai,LI Jin,LI Zhijun,et al. Research on coal rock image detection and recognition based on improved YOLOv5[J]. Coal Mine Machinery,2022,43(9):204-208.
    [7] 高峰,殷欣,刘泉声,等. 基于塔式池化架构的采掘工作面煤岩图像识别方法[J]. 煤炭学报,2021,46(12):4088-4102.

    GAO Feng,YIN Xin,LIU Quansheng,et al. Coal-rock image recognition method for mining and heading face based on spatial pyramid pooling structure[J]. Journal of China Coal Society,2021,46(12):4088-4102.
    [8] 司垒,王忠宾,熊祥祥,等. 基于改进 U−net 网络模型的综采工作面煤岩识别方法[J]. 煤炭学报,2021,46(增刊1):578-589.

    SI Lei,WANG Zhongbin,XIONG Xiangxiang,et al. Coal-rock recognition method of fully-mechanized coal mining face based on improved U-net network model[J]. Journal of China Coal Society,2021,46(S1):578-589.
    [9] 张斌,苏学贵,段振雄,等. YOLOv2在煤岩智能识别与定位中的应用研究[J]. 采矿与岩层控制工程学报,2020,2(2):90-97.

    ZHANG Bin,SU Xuegui,DUAN Zhenxiong,et al. Application of YOLOv2 in intelligent recognition and location of coal and rock[J]. Journal of Mining and Strata Control Engineering,2020,2(2):90-97.
    [10] 闫志蕊,王宏伟,耿毅德. 基于改进DeeplabV3+和迁移学习的煤岩界面图像识别方法[J]. 煤炭科学技术,2023,51(增刊1):429-439.

    YAN Zhirui,WANG Hongwei,GENG Yide. Coal-rock interface image recognition method based on improved DeeplabV3+ and transfer learning[J]. Coal Science and Technology,2023,51(S1):429-439.
    [11] 伍云霞,孟祥龙. 局部约束的自学习煤岩识别方法[J]. 煤炭学报,2018,43(9):2639-2646.

    WU Yunxia,MENG Xianglong. Locality-constrained self-taught learning for coal-rock recognition[J]. Journal of China Coal Society,2018,43(9):2639-2646.
    [12] 伍云霞,田一民. 基于字典学习的煤岩图像特征提取与识别方法[J]. 煤炭学报,2016,41(12):3190-3196.

    WU Yunxia,TIAN Yimin. Method of coal-rock image feature extraction and recognition based on dictionary learning[J]. Journal of China Coal Society,2016,41(12):3190-3196.
    [13] 吴岚虎,李智玮,刘垒烨,等. 基于场景几何信息的显著性目标检测方法综述[J]. 模式识别与人工智能,2023,36(2):120-142.

    WU Lanhu,LI Zhiwei,LIU Leiye,et al. A survey of salient object detection based on scene geometric information[J]. Pattern Recognition and Artificial Intelligence,2023,36(2):120-142.
    [14] HOU Xiaodi,ZHANG Liqing. Saliency detection:a spectral residual approach[C]. IEEE Conference on Computer Vision and Pattern Recognition,Minneapolis,2007:1-8.
    [15] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014. DOI: 10.48550/arXiv.1409.1556.
    [16] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]. European Conference on Computer Vision,Munich,2018:61-78.
    [17] HARRINGTON P. Machine learning in action[M]. Singapore:Springer Nature Singapore Pte Ltd. ,2012.
    [18] ZHOU Zhihua. Machine learning[M]. Singapore:Springer Nature Singapore Pte Ltd. ,2021.
    [19] ACHANTA R,HEMAMI S,ESTRADA F,et al. Frequency-tuned salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Munich ,2009:1597-1604.
    [20] CHENG Mingming,ZHANG Guoxin,MITRA N J,et al. Global contrast based salient region detection[C]. IEEE Transactions on Pattern Analysis and Machine Intelligence,Santa Barbara,2015:569-582.
    [21] ZHAI Yun,SHAH M. Visual attention detection in video sequences using spatiotemporal cues[C]. The 14th ACM International Conference on Multimedia,Santa Barbara,2006:815-824.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  37
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 修回日期:  2024-08-31
  • 网络出版日期:  2024-08-12

目录

    /

    返回文章
    返回