留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MES−YOLOv5s的综采工作面大块煤检测算法

徐慈强 贾运红 田原

徐慈强,贾运红,田原. 基于MES−YOLOv5s的综采工作面大块煤检测算法[J]. 工矿自动化,2024,50(3):42-47, 141.  doi: 10.13272/j.issn.1671-251x.2024030009
引用本文: 徐慈强,贾运红,田原. 基于MES−YOLOv5s的综采工作面大块煤检测算法[J]. 工矿自动化,2024,50(3):42-47, 141.  doi: 10.13272/j.issn.1671-251x.2024030009
XU Ciqiang, JIA Yunhong, TIAN Yuan. Large block coal detection algorithm for fully mechanized working face based on MES-YOLOv5s[J]. Journal of Mine Automation,2024,50(3):42-47, 141.  doi: 10.13272/j.issn.1671-251x.2024030009
Citation: XU Ciqiang, JIA Yunhong, TIAN Yuan. Large block coal detection algorithm for fully mechanized working face based on MES-YOLOv5s[J]. Journal of Mine Automation,2024,50(3):42-47, 141.  doi: 10.13272/j.issn.1671-251x.2024030009

基于MES−YOLOv5s的综采工作面大块煤检测算法

doi: 10.13272/j.issn.1671-251x.2024030009
基金项目: 国家重点研发计划资助项目(2020YFB1314003);山西省自然科学基金资助项目(201801D121189)。
详细信息
    作者简介:

    徐慈强(2000—),男,江西上饶人,硕士研究生,主要研究方向为煤矿电气自动化,E-mail:905079262@qq.com

  • 中图分类号: TD67

Large block coal detection algorithm for fully mechanized working face based on MES-YOLOv5s

  • 摘要: 综采工作面的目标具有高速运动、多尺度、遮挡等特点,现有的目标检测算法存在精度低、模型占用的内存大、硬件依赖强等问题。针对上述问题,提出了一种基于MES−YOLOv5s的综采工作面大块煤检测算法。采用轻量化设计,将MobileNetV3作为主干网络,以减小模型占用的内存,提高CPU端的检测速度;在颈部网络添加高效多尺度注意力(EMA)模块,融合不同尺度的上下文信息,并进一步减少计算开销;采用SIoU损失函数代替CIoU损失函数,以提高训练速度和推理准确性。消融实验结果表明:MobileNetV3大幅减少了模型占用的内存和检测时间,但mAP损失严重;EMA模块和SIoU损失函数可在一定程度上恢复损失的精度,同时保证模型在CPU上具有较高的检测速度,满足煤矿井下目标实时检测需求。对比实验结果表明,与DETR,YOLOv5n,YOLOv5s,YOLOv7模型相比,MES−YOLOv5s模型综合性能最好,mAP为84.6%,模型占用的内存为11.2 MiB,在CPU端的检测时间为31.8 ms,在高速运动、多尺度、遮挡和多目标的工况环境下能够保持较高的召回率和精度。

     

  • 图  1  YOLO系列网络模型性能对比

    Figure  1.  Performance comparison of YOLO series network models

    图  2  MES−YOLOV5s网络模型结构

    Figure  2.  MES-YOLOV5s network model structure

    图  3  bneck模块结构

    Figure  3.  Structure of bneck module

    图  4  EMA模块结构

    Figure  4.  Structure of efficient multi-scale attention(EMA) module

    图  5  长壁综采工作面数据集处理流程

    Figure  5.  The processing process of the dataset of the longwall fully mechanized working face

    图  6  不同模型部分检测结果

    Figure  6.  Partial detection results of different models

    表  1  消融实验结果

    Table  1.   Ablation test results

    改进策略 mAP/% 占用内
    存/MiB
    CPU检测
    时间/ms
    MobileNetV3 EMA SIoU
    × × × 85.1 54.1 68.5
    × × 80.9 11.1 28.8
    × × 87.3 54.7 75.7
    × × 85.7 54.1 64.9
    84.6 11.2 31.8
    下载: 导出CSV

    表  2  对比实验结果

    Table  2.   Comparative experimental results

    模型 mAP/% 占用内存/MiB CPU检测时间/ms
    DETR 81.3 149 496.2
    YOLOv5n 83.9 14 31.9
    YOLOv5s 85.1 54.1 68.5
    YOLOv7 86.5 284.6 320.8
    MES−YOLOv5s 84.6 11.2 31.8
    下载: 导出CSV
  • [1] 葛世荣,胡而已,李允旺. 煤矿机器人技术新进展及新方向[J]. 煤炭学报,2023,48(1):54-73.

    GE Shirong,HU Eryi,LI Yunwang. New progress and direction of robot technology in coal mine[J]. Journal of China Coal Society,2023,48(1):54-73.
    [2] 谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2018,43(5):1187-1197.

    XIE Heping,WANG Jinhua,WANG Guofa,et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society,2018,43(5):1187-1197.
    [3] 王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J/OL]. 煤炭学报:1-23[2024-02-22]. https://doi.org/10.13225/j.cnki.jccs.2023.1355.

    WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J/OL]. Journal of China Coal Society:1-23[2024-02-22]. https://doi.org/10.13225/j.cnki.jccs.2023.1355.
    [4] 詹召伟. 煤矿综采工作面智能化开采关键技术和发展方向[J]. 能源与节能,2023(1):82-86.

    ZHAN Zhaowei. Key technologies and development direction of intelligent mining in fully mechanized mining face[J]. Energy and Energy Conservation,2023(1):82-86.
    [5] 葛世荣,张晞,薛光辉,等. 我国煤矿煤机智能技术与装备发展研究[J]. 中国工程科学,2023,25(5):146-156. doi: 10.15302/J-SSCAE-2023.05.013

    GE Shirong,ZHANG Xi,XUE Guanghui,et al. Development of intelligent technologies and machinery for coal mining in China's underground coal mines[J]. Strategic Study of CAE,2023,25(5):146-156. doi: 10.15302/J-SSCAE-2023.05.013
    [6] 崔卫秀,穆润青,解鸿章,等. 500 m超长工作面刮板智能输送技术研究[J/OL]. 煤炭科学技术:1-10[2024-02-22]. http://kns.cnki.net/kcms/detail/11.2402.TD.20230921.1538.002.html.

    CUI Weixiu,MU Runqing,XIE Hongzhang,et al. Research on intelligent conveying technology of 500 m ultra-long face scraper[J/OL]. Coal Science and Technology:1-10[2024-02-22]. http://kns.cnki.net/kcms/detail/11.2402.TD.20230921.1538.002.html.
    [7] 苗长云,李佳. 基于机器视觉的带式输送机落料口堆煤检测[J]. 辽宁工程技术大学学报(自然科学版),2023,42(5):617-624.

    MIAO Changyun,LI Jia. Machine vision-based coal pile detection at drop port of belt conveyor[J]. Journal of Liaoning Technical University(Natural Science),2023,42(5):617-624.
    [8] 程德强,寇旗旗,江鹤,等. 全矿井智能视频分析关键技术综述[J]. 工矿自动化,2023,49(11):1-21.

    CHENG Deqiang,KOU Qiqi,JIANG He,et al. Overview of key technologies for mine-wide intelligent video analysis[J]. Journal of Mine Automation,2023,49(11):1-21.
    [9] 宋军强. OpenCV耦合机器视觉的背光板表面异物检测算法研究[J]. 组合机床与自动化加工技术,2015(11):83-87.

    SONG Junqiang. The study on image objects location and compensation technology based on OpenCV and machine vision[J]. Modular Machine Tool & Automatic Manufacturing Technique,2015(11):83-87.
    [10] 刘孝军,王飞. 基于AI的煤矿视频智能分析技术[J]. 煤炭科学技术,2022,50(增刊2):260-264.

    LIU Xiaojun,WANG Fei. Application of video intelligent analysis technology in coal mine based on computer vision[J]. Coal Science and Technology,2022,50(S2):260-264.
    [11] 曹现刚,李虎,王鹏,等. 基于跨模态注意力融合的煤炭异物检测方法[J]. 工矿自动化,2024,50(1):57-65.

    CAO Xiangang,LI Hu,WANG Peng,et al. A coal foreign object detection method based on cross modal attention fusion[J]. Journal of Mine Automation,2024,50(1):57-65.
    [12] 高涵,赵培培,于正,等. 基于特征增强与Transformer的煤矿输送带异物检测[J/OL]. 煤炭科学技术:1-11[2024-02-22]. http://kns.cnki.net/kcms/detail/11.2402.td.20240119.1515.012.html.

    GAO Han,ZHAO Peipei,YU Zheng,et al. Coal mine conveyor belt foreign object detection based on feature enhancement and transformer[J/OL]. Coal Science and Technology:1-11[2024-02-22]. http://kns.cnki.net/kcms/detail/11.2402.td.20240119.1515.012.html.
    [13] 张立亚. 基于生成对抗网络的带式输送机异物检测方法[J]. 工矿自动化,2023,49(11):53-59.

    ZHANG Liya. Foreign object detection method for belt conveyor based on generative adversarial nets[J]. Journal of Mine Automation,2023,49(11):53-59.
    [14] 王科平,连凯海,杨艺,等. 基于改进YOLOv4的综采工作面目标检测[J]. 工矿自动化,2023,49(2):70-76.

    WANG Keping,LIAN Kaihai,YANG Yi,et al. Target detection of the fully mechanized working face based on improved YOLOv4[J]. Journal of Mine Automation,2023,49(2):70-76.
    [15] 李江涛,张康辉,沙特. 煤中异物识别的深度学习模型轻量化策略[J]. 煤炭工程,2023,55(增刊1):220-224.

    LI Jiangtao,ZHANG Kanghui,SHA Te. Lightweight deep learning model compression strategy for coal foreign object recognition[J]. Coal Engineering,2023,55(S1):220-224.
    [16] 桂方俊,李尧. 基于CBA−YOLO模型的煤矸石检测[J]. 工矿自动化,2022,48(6):128-133.

    GUI Fangjun,LI Yao. Coal gangue detection based on CBA-YOLO model[J]. Journal of Mine Automation,2022,48(6):128-133.
    [17] LIU Shu,QI Lu,QIN Haifang,et al. Path aggregation network for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:8759-8768.
    [18] HOWARD A,SANDLER M,CHEN Bo,et al. Searching for MobileNetV3[C]. IEEE/CVF International Conference on Computer Vision,Seoul,2019:1314-1324.
    [19] OUYANG Daliang,HE Su,ZHANG Guozhong,et al. Efficient multi-scale attention module with cross-spatial learning[C]. IEEE International Conference on Acoustics,Speech and Signal Processing,Rhodes Island,2023:1-5.
    [20] YU Jiahui,JIANG Yuning,WANG Zhangyang,et al. UnitBox:an advanced object detection network[C]. The 24th ACM International Conference on Multimedia,2016:516-520. DOI: 10.1145/2964284.2967274.
    [21] GEVORGYAN Z. SIoU loss:more powerful learning for bounding box regression[EB/OL]. [2024-02-12]. https://arxiv.org/abs/2205.12740.
    [22] YANG Wenjuan,ZHANG Xuhui,MA Bing,et al. An open dataset for intelligent recognition and classification of abnormal condition in longwall mining[J]. Scientific Data,2023,10. DOI: 10.1038/s41597-023-02322-9.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  66
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-04
  • 修回日期:  2024-03-22
  • 网络出版日期:  2024-04-11

目录

    /

    返回文章
    返回