留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对抗修复网络的输送带表面缺陷检测

杨泽霖 杨立清 郝斌

杨泽霖,杨立清,郝斌. 基于对抗修复网络的输送带表面缺陷检测[J]. 工矿自动化,2024,50(9):108-114, 166.  doi: 10.13272/j.issn.1671-251x.2024030002
引用本文: 杨泽霖,杨立清,郝斌. 基于对抗修复网络的输送带表面缺陷检测[J]. 工矿自动化,2024,50(9):108-114, 166.  doi: 10.13272/j.issn.1671-251x.2024030002
YANG Zelin, YANG Liqing, HAO Bin. Detection of surface defects on conveyor belts based on adversarial repair networks[J]. Journal of Mine Automation,2024,50(9):108-114, 166.  doi: 10.13272/j.issn.1671-251x.2024030002
Citation: YANG Zelin, YANG Liqing, HAO Bin. Detection of surface defects on conveyor belts based on adversarial repair networks[J]. Journal of Mine Automation,2024,50(9):108-114, 166.  doi: 10.13272/j.issn.1671-251x.2024030002

基于对抗修复网络的输送带表面缺陷检测

doi: 10.13272/j.issn.1671-251x.2024030002
基金项目: 内蒙古自治区科技计划项目(2021GG0046,2021GG0048)。
详细信息
    作者简介:

    杨泽霖(1999—),男,河北保定人,硕士研究生,研究方向为机器视觉、机器学习、图像处理,E-mail:cnyangzelin@163.com

    通讯作者:

    杨立清(1967—),女,内蒙古赤峰人,副教授,硕士研究生导师,研究方向为无损检测、过程控制,E-mail:nmbtylq@163.com

  • 中图分类号: TD528/634

Detection of surface defects on conveyor belts based on adversarial repair networks

  • 摘要: 针对输送带缺陷数据获取和标注困难、输送带工作场景中的不稳定因素和数据波动导致基于深度学习的输送带缺陷检测方法精度低的问题,提出了一种基于对抗修复网络的输送带表面缺陷检测模型。该模型主要由自编码器结构的生成器和马尔可夫判别器组成。在训练阶段,将模拟的输送带表面缺陷图像输入生成器,得到无模拟缺陷的重构图像,提升模型对未知缺陷的泛化能力;将原始无损输送带图像、重构图像和模拟的输送带表面缺陷图像输入马尔可夫判别器,通过残差块获得特征图,提高模型对于微小缺陷的检测能力。在检测阶段,将待测图像输入训练完的生成器得到重构图像,再通过训练完的马尔可夫判别器提取待测图像与重构图像的特征图,根据待测图像与重构图像特征图之间的均方误差和待测图像特征图最大值,计算异常分数并与设定的阈值进行比较,从而判断待测图像是否存在缺陷。实验结果表明,该模型的接收操作特征曲线下面积(ROC−AUC)达0.999,精确率−召回率曲线下面积(PR−AUC)达0.997,单张图像检测时间为13.51 ms,能准确定位不同类型缺陷位置。

     

  • 图  1  基于对抗修复网络的输送带表面缺陷检测模型结构

    Figure  1.  Structure of conveyor belt surface defect detection model based on adversarial repair network

    图  2  模拟的输送带表面缺陷图像生成流程

    Figure  2.  Simulated conveyor belt surface defect image generation process

    图  3  异常分数计算流程

    Figure  3.  Anomaly score calculation process

    图  4  部分训练集样本

    Figure  4.  Samples of the training set

    图  5  部分测试集样本

    Figure  5.  Samples of the test set

    图  6  各模型ROC曲线

    Figure  6.  Receiver operating characteristic(ROC) curves of various models

    图  7  各模型PR曲线

    Figure  7.  Precision-recall(PR) curves of various models

    图  8  各模型异常分数分布

    Figure  8.  Anomaly score distribution of various models

    图  9  数据集检测效果

    Figure  9.  Detection results of the dataset

    表  1  各模型性能对比

    Table  1.   Performance comparison of various models

    模型 ROC−AUC PR−AUC 单张图像检测时间/ms
    SSIM−AE 0.914 0.904 28.11
    OCR−GAN 0.815 0.637 23.43
    GANomaly 0.944 0.898 18.01
    F−AnoGAN 0.944 0.917 11.72
    本文模型 0.999 0.997 13.51
    下载: 导出CSV

    表  2  消融实验结果

    Table  2.   Ablation experiment results

    模型 模拟的输
    送带表面
    缺陷图像
    自编码器
    结构的
    生成器
    马尔可夫
    判别器
    生成器
    复合损失
    函数
    异常分
    数计算
    ROC−AUC PR−AUC
    1 0.999 0.997
    2 × 0.704 0.753
    3 × 0.974 0.939
    4 × 0.779 0.554
    5 × 0.824 0.690
    6 × 0.986 0.975
    下载: 导出CSV
  • [1] 王海军,王洪磊. 带式输送机智能化关键技术现状与展望[J]. 煤炭科学技术,2022,50(12):225-239.

    WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyor[J]. Coal Science and Technology,2022,50(12):225-239.
    [2] 曹虎奇. 煤矿带式输送机撕带断带研究分析[J]. 煤炭科学技术,2015,43(增刊2):130-134.

    CAO Huqi. Study and analysis on tear belt and break belt of belt conveyor in coal mine[J]. Coal Science and Technology,2015,43(S2):130-134.
    [3] GUO Xiaoqiang,LIU Xinhua,ZHOU Hao,et al. Belt tear detection for coal mining conveyors[J]. Micromachines,2022,13(3):449. doi: 10.3390/mi13030449
    [4] 蹇华,向何,孙万权,等. 带式输送机胶带纵向撕裂问题分析与对策[J]. 中国设备工程,2022(增刊2):152-154.

    JIAN Hua,XIANG He,SUN Wanquan,et al. Analysis and countermeasures of longitudinal tearing of conveyor belt[J]. China Plant Engineering,2022(S2):152-154.
    [5] 程月,尚学文,王福平,等. 皮带撕裂的视觉检测[J]. 机械工程与自动化,2018(3):132-134,137. doi: 10.3969/j.issn.1672-6413.2018.03.054

    CHENG Yue,SHANG Xuewen,WANG Fuping,et al. Visual inspection of belt tearing[J]. Mechanical Engineering & Automation,2018(3):132-134,137. doi: 10.3969/j.issn.1672-6413.2018.03.054
    [6] 王以娜. 基于视觉检测的皮带纵向撕裂检测关键技术研究[D]. 鞍山:辽宁科技大学,2020.

    WANG Yi'na. Research on key technology of belt longitudinal tear detection based on visual inspection[D]. Anshan:University of Science and Technology Liaoning,2020.
    [7] 周宇杰,徐善永,黄友锐,等. 基于改进YOLOv4的输送带损伤检测方法[J]. 工矿自动化,2021,47(11):61-65.

    ZHOU Yujie,XU Shanyong,HUANG Yourui,et al. Conveyor belt damage detection method based on improved YOLOv4[J]. Industry and Mine Automation,2021,47(11):61-65.
    [8] 张梦超,周满山,张媛,等. 基于深度学习的矿用输送带损伤检测方法[J]. 工矿自动化,2021,47(6):51-56.

    ZHANG Mengchao,ZHOU Manshan,ZHANG Yuan,et al. Damage detection method for mine conveyor belt based on deep learning[J]. Industry and Mine Automation,2021,47(6):51-56.
    [9] GUO Xiaoqiang,LIU Xinhua,KRÓLCZYK G,et al. Damage detection for conveyor belt surface based on conditional cycle generative adversarial network[J]. Sensors,2022,22(9). DOI: 10.3390/s22093485.
    [10] YANG Qi,LI Fang,TIAN Hong,et al. A new knowledge-distillation-based method for detecting conveyor belt defects[J]. Applied Sciences,2022,12(19). DOI: 10.3390/app121910051.
    [11] 罗东亮,蔡雨萱,杨子豪,等. 工业缺陷检测深度学习方法综述[J]. 中国科学:信息科学,2022,52(6):1002-1039. doi: 10.1360/SSI-2021-0336

    LUO Dongliang,CAI Yuxuan,YANG Zihao,et al. Survey on industrial defect detection with deep learning[J]. Scientia Sinica (Informationis),2022,52(6):1002-1039. doi: 10.1360/SSI-2021-0336
    [12] TENG Yapeng,LI Haoyang,CAI Fuzhen,et al. Unsupervised visual defect detection with score-based generative model[EB/OL]. [2023-11-25]. https://arxiv.org/abs/2211.16092v1.
    [13] LYU Chengkan,ZHANG Zhengtao,SHEN Fei,et al. Unsupervised automatic defect inspection based on image matching and local one-class classification[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,Vancouver,2023:4435-4444.
    [14] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems,2014,27:2672-2680.
    [15] ZAVRTANIK V,KRISTAN M,SKOČAJ D. DRÆM-a discriminatively trained reconstruction embedding for surface anomaly detection[C]. IEEE/CVF International Conference on Computer Vision,Montreal,2021:8310-8319.
    [16] YANG Minghui,WU Peng,FENG Hui. MemSeg:a semi-supervised method for image surface defect detection using differences and commonalities[J]. Engineering Applications of Artificial Intelligence,2023,119. DOI: 10.1016/j.engappai.2023.105835.
    [17] CIMPOI M,MAJI S,KOKKINOS I,et al. Describing textures in the wild[C]. IEEE Conference on Computer Vision and Pattern Recognition,Columbus,2014:3606-3613.
    [18] WANG Zhou,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612. doi: 10.1109/TIP.2003.819861
    [19] JOHNSON J,ALAHI A,LI Feifei. Perceptual losses for real-time style transfer and super-resolution[C]. 14th European Conference on Computer Vision,Amsterdam,2016:694-711.
    [20] BERGMANN P,LÖWE S,FAUSER M,et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[EB/OL]. [2023-11-25]. https://arxiv.org/abs/1807.02011v3.
    [21] LIANG Yufei,ZHANG Jiangning,ZHAO Shiwei,et al. Omni-frequency channel-selection representations for unsupervised anomaly detection[J]. IEEE Transactions on Image Processing,2023,32:4327-4340. doi: 10.1109/TIP.2023.3293772
    [22] AKCAY S,ATAPOUR-ABARGHOUEI A,RECKON T P. GANomaly:semi-supervised anomaly detection via adversarial training[C]. 14th Asian Conference on Computer Vision,Perth,2019:622-637.
    [23] SCHLEGL T,SEEBÖCK P,WALDSTEIN S M,et al. F-AnoGAN:fast unsupervised anomaly detection with generative adversarial networks[J]. Medical Image Analysis,2019,54:30-44. doi: 10.1016/j.media.2019.01.010
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  14
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-01
  • 修回日期:  2024-09-29
  • 网络出版日期:  2024-09-29

目录

    /

    返回文章
    返回