留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

护盾式临时支护机器人带压行驶液压控制系统研究

马宏伟 李烺 薛旭升 王川伟 王赛赛 赵英杰 周文剑 张恒

马宏伟,李烺,薛旭升,等. 护盾式临时支护机器人带压行驶液压控制系统研究[J]. 工矿自动化,2024,50(7):21-31.  doi: 10.13272/j.issn.1671-251x.2024030001
引用本文: 马宏伟,李烺,薛旭升,等. 护盾式临时支护机器人带压行驶液压控制系统研究[J]. 工矿自动化,2024,50(7):21-31.  doi: 10.13272/j.issn.1671-251x.2024030001
MA Hongwei, LI Lang, XUE Xusheng, et al. Research on hydraulic control system for shield type temporary support robot driving under pressure[J]. Journal of Mine Automation,2024,50(7):21-31.  doi: 10.13272/j.issn.1671-251x.2024030001
Citation: MA Hongwei, LI Lang, XUE Xusheng, et al. Research on hydraulic control system for shield type temporary support robot driving under pressure[J]. Journal of Mine Automation,2024,50(7):21-31.  doi: 10.13272/j.issn.1671-251x.2024030001

护盾式临时支护机器人带压行驶液压控制系统研究

doi: 10.13272/j.issn.1671-251x.2024030001
基金项目: 国家重点研发计划资助项目(2023YFC2907603);国家自然科学基金面上项目(52374161);陕西省重点研发计划专项项目(2023-LL-QY—03);陕西省科技计划项目(2023-JC-YB-331)。
详细信息
    作者简介:

    马宏伟(1957—),男,陕西兴平人,教授,博士,博士研究生导师,研究方向为智能检测与控制、机器人技术、现代无损检测与评价等,E-mail:mahw@xust.edu.cn

    通讯作者:

    薛旭升(1987—),男,陕西兴平人,副教授,博士,硕士研究生导师,研究方向为智能检测与控制、煤矿机器人技术等,E-mail:xuexsh@xust.edu.cn

  • 中图分类号: TD353

Research on hydraulic control system for shield type temporary support robot driving under pressure

  • 摘要: 护盾式临时支护机器人是适应夹矸与片帮共存的大断面巷道智能掘进机器人系统的重要组成部分,其主要功能是为实现“掘支并行”作业提供安全可靠的工作空间。为加强护盾式临时支护机器人推移行驶过程中对围岩的安全稳定支护,根据护盾式临时支护机器人结构、工作环境与作业需求,建立其带压行驶的推移量与支护力数学模型及带压行驶动力学模型,设计了护盾式临时支护机器人带压行驶液压控制系统。该系统主要由支护液压系统、行驶液压系统组成:静态支护时,支护液压系统需时刻输出大于上盾体自身重力的支护力,行驶液压系统处于待机状态;带压行驶时,支护液压系统和行驶液压系统同时工作,在保证临时支护机器人“减压不离顶”的同时,与顶板时刻带压并稳步前移。提出了基于模糊PID的护盾式临时支护机器人带压行驶精准控制方法:通过集成在推移油缸上的位移传感器与液压回路中的压力传感器实时采集临时支护机器人的压力与位移信号,用于反映临时支护机器人带压行驶途中支护力和行驶位移的变化情况,并根据支护力和推移量的误差和误差率,利用模糊PID算法对支护力和推移量的控制参数进行修正,实现基于模糊PID算法的带压行驶可靠控制。仿真与实验结果均表明,模糊PID控制的效果优于传统PID控制,在模糊PID控制下,护盾式临时支护机器人推移行驶过程中的支护力相对误差小于1%,行驶位移误差小于2 mm,且支护力和推移量控制响应速度快,保证了推移行驶过程中对围岩的安全稳定支护。

     

  • 图  1  护盾式掘进机器人系统组成

    Figure  1.  Composition of shield-type tunneling robot system excavation

    图  2  护盾式临时支护机器人组成

    Figure  2.  Composition of shield-type temporary support robot system

    图  3  护盾式临时支护机器人工况切换

    Figure  3.  Working condition switching of shield-type temporary support robot

    图  4  护盾式临时支护机器人受力模型

    Figure  4.  Force model of shield-type temporary support robot

    图  5  护盾式临时支护机器人液压控制系统原理

    Figure  5.  Hydraulic control system principle of shield-type temporary support robot

    图  6  带压行驶模糊PID控制原理

    Figure  6.  Fuzzy PID control principle of driving under pressure

    图  7  带压行驶液压控制系统联合仿真模型

    Figure  7.  Joint simulation model of hydraulic control system for driving under pressure

    图  8  带压行驶液压控制系统模糊PID控制模型

    Figure  8.  Fuzzy PID control model of hydraulic control system for driving under pressure

    图  9  支撑油缸支护力和位移仿真曲线

    Figure  9.  Supporting force and displacement simulation curve of supporting cylinder

    图  10  阶跃信号下的支护力及其误差仿真曲线

    Figure  10.  Simulation curves of supporting force and its error under the step signal

    图  11  斜坡信号下的支护力及其误差仿真曲线

    Figure  11.  Simulation curves of the support force and its error under the slope signal

    图  12  推拉位移仿真结果

    Figure  12.  Simulation results of push-pull displacement

    图  13  带压行驶控制实验台

    Figure  13.  Experimental bench for the control of driving under pressure

    图  14  带压行驶装置工作原理

    Figure  14.  Working principle of driving under pressure device

    图  15  带压行驶装置支撑油缸支护力变化曲线

    Figure  15.  Supporting force curves of the supporting cylinder of the pressurized driving device

    图  16  带压行驶控制系统组成

    Figure  16.  Composition of driving under pressure control system

    图  17  支撑油缸支护力和位移实验曲线

    Figure  17.  Experimental curves of supporting force and displacement of supporting cylinder

    图  18  阶跃信号下的支护力及其误差实验曲线

    Figure  18.  Experimental curves of support force and its error under the step signal

    图  19  斜坡信号下的支护力及其误差实验曲线

    Figure  19.  Experimental curves of support force and its error under the slope signal

    图  20  推拉位移实验结果

    Figure  20.  Experimeatal results of the push-pull displacement

    表  1  护盾式临时支护机器人主要参数

    Table  1.   Main parameters of shield-type temporary support robot

    参数
    机器人Ⅰ上盾体重力G11/N 5.7×104
    机器人Ⅱ上盾体重力G21/N 6.5×104
    机器人Ⅰ下盾体重力G12/N 5.1×104
    机器人Ⅱ下盾体重力G22/N 2.5×104
    机器人Ⅰ上盾体接顶面积S1/m2 27.08
    机器人Ⅱ上盾体接顶面积S2/m2 20.31
    钻锚平台重力G3/N 5.5×104
    电液控平台重力G4/N 4×105
    运输系统重力G5/N 1.05×106
    下载: 导出CSV

    表  2  模糊控制规则

    Table  2.   Fuzzy control rule

    Δe(Δe') ee')
    NB NM NS ZO PS PM PB
    NB PB/NS/PS PB/NB/NS PM/NM/NB PM/NM/NB PS/NS/NB ZO/ZO/NM ZO/ZO/PS
    NM PB/NB/PS PB/NB/NS PM/NM/NB PS/NS/NM PS/NS/NM ZO/ZO/NS NS/ZO/ZO
    NS PM/NB/ZO PM/NM/NS PM/NS/NM PS/NS/NM ZO/ZO/NS NS/PS/NS NS/PS/ZO
    ZO PM/NM/ZO PM/NM/NS PS/NS/NS ZO/ZO/NS NS/PS/NS NM/PM/NS NM/PM/ZO
    PS PS/NM/ZO PS/NS/ZO ZO/ZO/ZO NS/PS/ZO NS/PS/ZO NM/PM/ZO NM/PB/ZO
    PM PS/ZO/PB ZO/ZO/NS NS/PS/PS NM/PS/PS NM/PM/PS NM/PB/PS NB/PB/PB
    PB ZO/ZO/PB ZO/ZO/PM NM/PS/PM NM/PM/PM NM/PM/PS NB/PB/PS NB/PB/PB
    下载: 导出CSV

    表  3  液压系统主要参数

    Table  3.   Main parameters of hydraulic system

    参数 参数
    液压泵排量/(mL·r−1 15.75 推移油缸外径/m 0.18
    电动机转速/(r·min−1 1 480 推移油缸内径/m 0.11
    支撑油缸外径/m 0.25 推移油缸行程/m 1.2
    支撑油缸内径/m 0.125 溢流阀开启压力/MPa 23
    支撑油缸行程/m 0.7 油液弹性模量/MPa 700
    下载: 导出CSV

    表  4  支护力自适应控制仿真和实验结果对比

    Table  4.   Comparison of simulation and experimental results of adaptive control of support force %

    给定
    信号
    仿真相对误差 实验相对误差
    PID 模糊PID PID 模糊PID
    阶跃 6.72 0.53 12.51 0.56
    斜坡 1.50 0.81 2.11 0.95
    下载: 导出CSV

    表  5  推拉位移仿真和实验结果对比

    Table  5.   Comparison of simulation and experimental results of push-pull displacement s

    运动
    过程
    仿真耗时 实验耗时
    PID 模糊PID PID 模糊PID
    伸出 69.81 60.51 15.56 11.47
    缩回 68.79 61.23 15..84 11.85
    下载: 导出CSV
  • [1] 田劼,李阳,张磊,等. 基于PSO−BP神经网络的临时支架支撑力自适应控制[J]. 工矿自动化,2023,49(7):67-74.

    TIAN Jie,LI Yang,ZHANG Lei,et al. Adaptive control of temporary support force based on PSO-BP neural network[J]. Journal of Mine Automation,2023,49(7):67-74.
    [2] 秦海忠,付玉凯,王涛. 深部复合顶板巷道变形破坏特征及支护技术[J]. 工矿自动化,2020,46(10):80-86.

    QIN Haizhong,FU Yukai,WANG Tao. Deformation and failure characteristics and support technology of deep roadway with composite roof[J]. Industry and Mine Automation,2020,46(10):80-86.
    [3] 朱俊福. 深部层状岩体巷道围岩松动圈形成机理及其工程应用研究[D]. 徐州:中国矿业大学,2021.

    ZHU Junfu. Study on the formation mechanism andits engineering application of broken rockzone in deep bedded rock mass[D]. Xuzhou:China University of Mining and Technology,2021.
    [4] 张铁军,李伟涛,尹松阳. 深部开采巷道掘进工作面受力特征及合理空顶距分析[J]. 煤炭科技,2022,43(5):50-53,57.

    ZHANG Tiejun,LI Weitao,YIN Songyang. Analysis of the stress characteristics and reasonable space between roadway and roof in deep mining[J]. Coal Science & Technology Magazine,2022,43(5):50-53,57.
    [5] 郭文孝. 交叉迈步式快速掘进临时支护支架组的研究[J]. 煤矿机械,2014,35(12):187-189.

    GUO Wenxiao. Research on rapid excavation and temporary support of moving cross-type supportgroup[J]. Coal Mine Machinery,2014,35(12):187-189.
    [6] 王建霖. 临时支护装置在煤矿掘进工作面的应用[J]. 矿业装备,2023(12):19-21. doi: 10.3969/j.issn.2095-1418.2023.12.006

    WANG Jianlin. Application of temporary support device in coal mine excavation face[J]. Mining Equipment,2023(12):19-21. doi: 10.3969/j.issn.2095-1418.2023.12.006
    [7] 曹连民,戴清云,张丹,等. 大倾角工作面液压支架横向稳定性研究[J]. 煤矿安全,2017,48(2):65-68.

    CAO Lianmin,DAI Qingyun,ZHANG Dan,et al. Study on lateral stability of hydraulic support at large inclined angle working face[J]. Safety in Coal Mines,2017,48(2):65-68.
    [8] 曹连民,张亚珠,郭徽,等. 大采高液压支架带压移架技术[J]. 煤矿安全,2018,49(3):83-86.

    CAO Lianmin,ZHANG Yazhu,GUO Hui,et al. Advancing support with pressure technology for hydraulic support with large mining height[J]. Safety in Coal Mines,2018,49(3):83-86.
    [9] 韩宝珠,安叶青. 基于PLC的液压支架带压移架控制技术[J]. 煤炭技术,2022,41(7):185-187.

    HAN Baozhu,AN Yeqing. Control technology of hydraulic support moving under pressure based on PLC[J]. Coal Technology,2022,41(7):185-187.
    [10] 杨科,池小楼,刘帅. 大倾角煤层综采工作面液压支架失稳机理与控制[J]. 煤炭学报,2018,43(7):1821-1828.

    YANG Ke,CHI Xiaolou,LIU Shuai. Instability mechanism and control of hydraulic support in fully mechanized longwall mining with large dip[J]. Journal of China Coal Society,2018,43(7):1821-1828.
    [11] 王国法,庞义辉,李明忠,等. 超大采高工作面液压支架与围岩耦合作用关系[J]. 煤炭学报,2017,42(2):518-526.

    WANG Guofa,PANG Yihui,LI Mingzhong,et al. Hydraulic support and coal wall coupling relationship in ultra large height mining face[J]. Journal of China Coal Society,2017,42(2):518-526.
    [12] 马宏伟,赵英杰,薛旭升,等. 智能采煤机器人关键技术[J]. 煤炭学报,2024,49(2):1174-1182.

    MA Hongwei,ZHAO Yingjie,XUE Xusheng,et al. Key technologies of intelligent mining robot[J]. Journal of China Coal Society,2024,49(2):1174-1182.
    [13] 李延民,刘锡山,王振,等. 基于AMESim−Simulink的自适应模糊PID电液比例位置控制研究[J]. 机电工程,2020,37(12):1453-1458.

    LI Yanmin,LIU Xishan,WANG Zhen,et al. Adaptive fuzzy PID electro-hydraulic proportional position control based on AMESim-Simulink[J]. Journal of Mechanical & Electrical Engineering,2020,37(12):1453-1458.
    [14] 张增宝,李世振,刘延俊,等. 基于模糊PID控制策略的液压缸试验台设计[J]. 液压与气动,2020(5):27-32.

    ZHANG Zengbao,LI Shizhen,LIU Yanjun,et al. Design of hydraulic cylinder test bench based on fuzzy PID control strategy[J]. Chinese Hydraulics & Pneumatics,2020(5):27-32.
    [15] 薛光辉,管健,柴敬轩,等. 基于神经网络PID综掘巷道超前支架支撑力自适应控制[J]. 煤炭学报,2019,44(11):3596-3603.

    XUE Guanghui,GUAN Jian,CHAI Jingxuan,et al. Adaptive control of advance bracket support force in fully mechanized roadway based on neural network PID[J]. Journal of China Coal Society,2019,44(11):3596-3603.
    [16] 栾丽君,赵慧萌,谢苗,等. 超前支架速度、压力稳定切换控制策略研究[J]. 机械强度,2017,39(4):747-753.

    LUAN Lijun,ZHAO Huimeng,XIE Miao,et al. Research on speed and pressure control strategy of stable switch about forepoling equipment[J]. Journal of Mechanical Strength,2017,39(4):747-753.
    [17] 卢进南,谢苗,毛君,等. 迈步式超前支护装置降架过程控制方法[J]. 辽宁工程技术大学学报(自然科学版),2017,36(7):745-749.

    LU Jinnan,XIE Miao,MAO Jun,et al. Control method for frame down process of stepping-type advanced supporting equipment[J]. Journal of Liaoning Technical University (Natural Science),2017,36(7):745-749.
    [18] CHEN Qiping,SHAO Hao,LIU Yu,et al. Hydraulic-pressure-following control of an electronic hydraulic brake system based on a fuzzy proportional and integral controller[J]. Engineering Applications of Computational Fluid Mechanics,2020,14(1):1228-1236. doi: 10.1080/19942060.2020.1816495
    [19] ZHONG Qi,ZHANG Bin,BAO Huiming,et al. Analysis of pressure and flow compound control characteristics of an independent metering hydraulic system based on a two-level fuzzy controller[J]. Journal of Zhejiang University:Science A,2019,20(3):184-200. doi: 10.1631/jzus.A1800504
    [20] JIN Xin,CHEN Kaikang,ZHAO Yang,et al. Simulation of hydraulic transplanting robot control system based on fuzzy PID controller[J]. Measurement,2020,164. DOI: 10.1016/j.measurement.2020.108023.
    [21] 马宏伟,王鹏,张旭辉,等. 煤矿巷道智能掘进机器人系统关键技术研究[J]. 西安科技大学学报,2020,40(5):751-759.

    MA Hongwei,WANG Peng,ZHANG Xuhui,et al. Research on key technology of intelligent tunneling robotic system in coal mine[J]. Journal of Xi'an University of Science and Technology,2020,40(5):751-759.
  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  53
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-01
  • 修回日期:  2024-07-22
  • 网络出版日期:  2024-08-02

目录

    /

    返回文章
    返回