A pose recognition method for warehouse cleaning robots based on extended Kalman filtering
-
摘要: 煤矿水仓巷道光照强度不均匀且结构化特征明显,传统基于视觉的机器人位姿识别方法识别不准确,而单一的机器人定位技术如自适应蒙特卡洛(AMCL)方法随着清仓机器人的长时间运行,输出的位姿信息存在较大累计误差,易出现煤泥清理不干净、与两侧巷道发生碰撞的情况。针对上述问题,提出了一种基于扩展卡尔曼滤波的多传感器融合清仓机器人位姿识别方法。首先搭建多传感器融合算法框架,建立里程计、惯性测量装置、激光雷达数据采集模型;其次基于扩展卡尔曼滤波原理,以惯性测量装置角度信息建立观测方程,结合里程计位姿信息,得到第1次融合的清仓机器人位姿矩阵,利用激光雷达的位置信息与之前的位姿矩阵进行迭代,得到第2次融合的清仓机器人位姿矩阵;最后采用互补滤波算法对融合后的清仓机器人位姿矩阵进行处理,输出最终的清仓机器人位姿矩阵。实验结果表明:在直线位姿识别中2次的最大位置误差为0.04 m,最大姿态角误差为0.05 rad;在模拟巷道实验中的最大位置误差为0.1 m,最大姿态角误差为0.085 rad;与AMCL方法相比,基于扩展卡尔曼滤波的清仓机器人位姿识别方法在减少清仓机器人运行过程中的累计误差方面表现出显著的有效性。Abstract: The lighting intensity of coal mine water storage roadways is uneven and the structured features are obvious. Traditional vision based robot pose recognition methods are not accurate. The single robot positioning techniques such as Adaptive Monte Carlo localization (AMCL) method have significant cumulative errors in the output pose information with the long-term operation of the cleaning robot. It is easy to encounter situations where the coal slurry is not cleaned thoroughly and collides with both sides of the roadway. In order to solve the above problem, a multi-sensor fusion clearance robot pose recognition method based on extended Kalman filtering is proposed. Firstly, the method builds a multi-sensor fusion algorithm framework and establishes models for odometer, inertial measurement devices, and LiDAR data acquisition. Secondly, based on the principle of extended Kalman filtering, an observation equation is established using the angle information of the inertial measurement device. Combined with the odometer pose information, the first fusion of the clearance robot pose matrix is obtained. Then, the position information of the lidar is iterated with the previous pose matrix to obtain the second fused clearance robot pose matrix. Finally, the complementary filtering algorithm is used to process the pose matrix of the clearance robot after two fusion and output the final pose matrix of the clearance robot. The experimental results show that the maximum position error in linear pose recognition is 0.04 m, and the maximum attitude angle error is 0.05 rad. The maximum position error in the simulated roadway experiment is 0.1 m, and the maximum attitude angle error is 0.085 rad. Compared with the AMCL method, the pose recognition method of the warehouse cleaning robot based on extended Kalman filtering shows significant effectiveness in reducing the cumulative error during the operation of the warehouse cleaning robot.
-
表 1 坐标点实际值与2种方法处理结果
Table 1. Actual values of coordinate points and processing results using two methods
m 观测点编号 真实坐标 测量坐标 AMCL 本文方法 1 (0.0, 0.0) (−0.04, −0.03) (−0.015, −0.003) 2 (−0.3, − 0.7) (−0.326, −0.796) (−0.316, −0.726) 3 (15, −0.4) (15.105, −0.427) (15.034, −0.423) 4 (10.3, −2) (10.435, −1.877) (10.289, −1.893) 5 (5, −0.85) (5.105, −0.691) (5.043, −0.821) 表 2 姿态角实际值与2种方法处理结果
Table 2. Actual value of attitude angle and processing results using two methods
rad 观测点编号 真实姿态角 测量姿态角 AMCL 本文方法 1 1.45 1.428 1.463 2 −3.14 −3.054 −3.123 3 0.15 0.052 0.093 4 1.57 1.421 1.485 5 3.14 2.975 3.085 表 3 位置误差和姿态角误差对比分析
Table 3. Comparative analysis of pose error and attitude angle error
编号 位置误差/m 姿态角误差/rad AMCL 本文方法 AMCL 本文方法 1 0.05 0.02 0.022 0.013 2 0.10 0.03 0.086 0.017 3 0.11 0.04 0.098 0.057 4 0.18 0.10 0.149 0.085 5 0.19 0.05 0.165 0.055 -
[1] 贾建称,贾茜,桑向阳,等. 我国煤矿地质保障系统建设30年:回顾与展望[J]. 煤田地质与勘探,2023,51(1):86-106.JIA Jiancheng,JIA Qian,SANG Xiangyang,et al. Review and prospect of coal mine geological guarantee system in China during 30 years of construction[J]. Coal Geology & Exploration,2023,51(1):86-106. [2] 曾一凡,武强,赵苏启,等. 我国煤矿水害事故特征、致因与防治对策[J]. 煤炭科学技术,2023,51(7):1-14.ZENG Yifan,WU Qiang,ZHAO Suqi,et al. Characteristics,causes,and prevention measures of coal mine water hazard accidents in China[J]. Coal Science and Technology,2023,51(7):1-14. [3] 石军杰,高贵军,游青山,等. 煤矿井下水仓清理机器人系统设计与应用[J]. 煤炭工程,2022,54(11):205-208.SHI Junjie,GAO Guijun,YOU Qingshan,et al. Water bin cleaning robot system for underground coal mine[J]. Coal Engineering,2022,54(11):205-208. [4] 郭培红,薛蛟生,朱建安,等. 全液压水仓煤泥清挖泵送一体机研制[J]. 煤矿机械,2015,36(1):148-150.GUO Peihong,XUE Jiaosheng,ZHU Jian'an,et al. Development of cleaning-pumping combined machine with full hydraulic control for coal slime in water sump[J]. Coal Mine Machinery,2015,36(1):148-150. [5] 宋峰,蒲仁利,钟灵敏,等. 一种矿用水仓清淤系统:CN202210801796.5[P]. 2022-09-02.SONG Feng,PU Renli,ZHONG Lingmin,et al. A mine water bin dredging system:CN202210801796.5[P]. 2022-09-02. [6] 姚贵英,曹梦媛,马婧. 煤矿水仓清理机器人研究与设计[J]. 煤矿机械,2020,41(2):4-6.YAO Guiying,CAO Mengyuan,MA Jing. Research and design of coal mine sump cleaning robot[J]. Coal Mine Machinery,2020,41(2):4-6. [7] 姚立健,丁为民,张培培,等. 基于改进型广义Hough变换的茄子果实位姿识别方法[J]. 农业工程学报,2009,25(12):128-132. doi: 10.3969/j.issn.1002-6819.2009.12.023YAO Lijian,DING Weimin,ZHANG Peipei,et al. Recognition method of position and attitude of eggplant fruits based on improved generalized Hough transforms[J]. Transactions of the Chinese Society of Agricultural Engineering,2009,25(12):128-132. doi: 10.3969/j.issn.1002-6819.2009.12.023 [8] 陈东旭,赵铁军,乔赫廷. 基于线结构光的焊缝位姿识别研究[J]. 机械工程与自动化,2021(4):38-40,43.CHEN Dongxu,ZHAO Tiejun,QIAO Heting. Research on weld position-posture recognition based on line structured light[J]. Mechanical Engineering & Automation,2021(4):38-40,43. [9] 马斌,彭光宇. 基于单目视觉的钻杆位姿识别技术研究[J]. 煤田地质与勘探,2022,50(10):171-178. doi: 10.12363/issn.1001-1986.22.01.0036MA Bin,PENG Guangyu. Research on drill pipe pose recognition technology based on monocular vision[J]. Coal Geology & Exploration,2022,50(10):171-178. doi: 10.12363/issn.1001-1986.22.01.0036 [10] KEDONG W. A new algorithm for fine acquisition of GPS carrier frequency[J]. GPS Solutions,2014,18(4):581-592. doi: 10.1007/s10291-013-0356-2 [11] 黄西平,杨飞. 综采工作面巡检机器人自主定位方法[J]. 工矿自动化,2023,49(4):86-91.HUANG Xiping,YANG Fei. Autonomous positioning method for inspection robots in fully mechanized working face[J]. Journal of Mine Automation,2023,49(4):86-91. [12] 陆一,魏东岩,纪新春,等. 地磁定位方法综述[J]. 导航定位与授时,2022,9(2):118-130.LU Yi,WEI Dongyan,JI Xinchun,et al. Review of geomagnetic positioning method[J]. Navigation Positioning and Timing,2022,9(2):118-130. [13] 崔苗,喻鑫,李学易,等. 多载波无线携能通信的上下行链路联合资源分配[J]. 通信学报,2019,40(3):206-214. doi: 10.11959/j.issn.1000-436x.2019052CUI Miao,YU Xin,LI Xueyi,et al. Joint downlink and uplink resource allocation for multi-carrier SWIPT system[J]. Journal on Communications,2019,40(3):206-214. doi: 10.11959/j.issn.1000-436x.2019052 [14] SMITH R,SELF M,CHEESEMAN P. Estimating uncertain spatial relationships in robotics[J]. Machine Intelligence & Pattern Recognition,1988,5(5):435-461. [15] FOX D,BURGARD W,DELLAERT F,et al. Monte carlo localization:efficient position estimation for mobile robots[C]. Sixteenth National Conference on Artificial Intelligence,Orland,1999. [16] 王宁,王坚,李丽华. 一种改进的AMCL机器人定位方法[J]. 导航定位学报,2019,7(3):31-37.WANG Ning,WANG Jian,LI Lihua. An improved adaptive monte carlo localization method for robot[J]. Journal of Navigation and Positioning,2019,7(3):31-37. [17] 冯佳萌,裴东,邹勇,等. 基于机器人激光定位的一种改进AMCL算法[J]. 激光与光电子学进展,2021,58(20):479-487.FENG Jiameng,PEI Dong,ZOU Yong,et al. An improved AMCL algorithm based on robot laser localization[J]. Laser & Optoelectronics Progress,2021,58(20):479-487. [18] 马先重. 基于多传感器融合的室内移动机器人定位及障碍物检测与测量研究[D]. 武汉:武汉科技大学,2021.MA Xianchong. Research on localization and obstacle detection and measurement of indoor mobile robot based on multi sensor fusion[D]. Wuhan:Wuhan University of Science and Technology,2021. [19] 金书奎,寇子明,吴娟. 煤矿水泵房巡检机器人路径规划与跟踪算法的研究[J]. 煤炭科学技术,2022,50(5):253-262.JIN Shukui,KOU Ziming,WU Juan. Research on path planning and tracking algorithm of inspection robot in coal mine water[J]. Coal Science and Technology,2022,50(5):253-262. [20] 宗意凯,苏淑靖,高瑜宏. 基于多源IMU和粒子滤波优化的姿态融合算法[J]. 仪表技术与传感器,2023(8):88-95. doi: 10.3969/j.issn.1002-1841.2023.08.015ZONG Yikai,SU Shujing,GAO Yuhong. Attitude fusion algorithm based on multi-source IMU and particle filter optimization[J]. Instrument Technique and Sensor,2023(8):88-95. doi: 10.3969/j.issn.1002-1841.2023.08.015 [21] 沈斯杰,田昕,魏国亮,等. 基于2D激光雷达的SLAM算法研究综述[J]. 计算机技术与发展,2022,32(1):13-18,46. doi: 10.3969/j.issn.1673-629X.2022.01.003SHEN Sijie,TIAN Xin,WEI Guoliang,et al. Review of SLAM algorithm based on 2D lidar[J]. Computer Technology and Development,2022,32(1):13-18,46. doi: 10.3969/j.issn.1673-629X.2022.01.003 [22] PENG Gang,ZHENG Wei,LU Zezao,et al. An improved AMCL algorithm based on laser scanning match in a complex and unstructured environment[J]. Complexity,2018(5):1-11. [23] ARASARATNAM I,HAYKIN S,ELLIOTT R J. Discrete-time nonlinear filtering algorithms using gauss-hermite quadrature[J]. Proceedings of the IEEE,2007,95(5):953-977. [24] SU Zhifeng,ZHOU Jiehua,DAI Jiyang,et al. Optimization design and experimental study of gmapping algorithm[C]. Chinese Control and Decision Conference,Hefei,2020. DOI: 10.1109/CCDC49329.2020.9164603.