A generation method for the cutting height template of the shearer drum based on working condition triggering
-
摘要: 针对采煤机在工作过程中易受不同工况条件的影响导致滚筒调高精度低的问题,提出了一种基于工况触发的采煤机滚筒截割高度模板生成方法。对采煤机历史传感器数据进行预处理和特征提取,选择影响滚筒高度调节的截割电动机电流、截割电动机温度、俯仰角、横滚角、牵引速度5维特征数据,构建用于生成滚筒截割高度模板的补偿回声状态网络(C−ESN)模型;建立工况触发机制,将采煤机传感器实时数据输入C−ESN模型,以测试误差为判断准则,识别当前采煤机的工况为正常区域、三角煤区域或异常工况;最后,C−ESN模型生成相应的滚筒截割高度模板。当三角煤区域和正常区域测试误差都大于阈值时,采用迁移学习方法对测试误差小的截割高度模板参数进行修正,以保证异常工况下截割高度模板的精度。基于现场采煤机实际数据的实验结果表明:左右滚筒截割高度模板与实际截割高度相比,在正常区域的最大误差分别为11.47,9.96 cm,在三角煤区域最大误差分别为12.91,7.94 cm,能够满足工程实际要求;与传统回声状态网络和径向基函数网络模型相比,C−ESN模型的精度在正常区域分别提升了54%和57%,在三角煤区域分别提升了10%和69%。Abstract: In order to solve the problem of low precision in drum height adjustment caused by different working conditions during the working process of the shearer, a generation method for cutting height template of the shearer drums based on working condition triggering is proposed. The method preprocesses and extracts features from historical sensor data of the shearer, selects 5-dimensional feature data that affect the adjustment of drum height, including cutting motor current, cutting motor temperature, pitch angle, roll angle, and traction speed. The method constructs a compensated echo state network (C-ESN) model for generating drum cutting height templates. The method establishes a working condition triggering mechanism, inputs real-time data from the shearer sensors into the C-ESN model. The method uses testing error as the judgment criterion to recognize the current working condition of the shearer as normal area, triangular coal area, or abnormal working condition. Finally, the C-ESN model generates the corresponding drum cutting height template. When the testing errors in both the triangular coal area and the normal area are greater than the threshold, transfer learning method is used to correct the parameters of the cutting height template with small testing errors to ensure the precision of the cutting height template under abnormal working conditions. The experimental results based on actual data of on-site coal mining machines show that compared with the actual cutting height, the maximum errors of the left and right drum cutting height templates in the normal area are 11.47 cm and 9.96 cm, respectively, and in the triangular coal area are 12.91 cm and 7.94 cm, respectively.The results can meet the practical requirements of engineering. Compared with traditional echo state network and radial basis function network models, the precision of the C-ESN model has been improved by 54% and 57% in the normal region, and by 10% and 69% in the triangular coal region, respectively.
-
表 1 工况划分
Table 1. Classification of working condition
工况 截割工艺 正常区域 从机头向机尾正常割煤 三角煤区域 清浮煤 清浮煤返回 斜切进刀 斜切进刀返回 表 2 807工作面部分采煤机特征数据
Table 2. Part of the characteristic data of shearer in 807 working face
时间 温度/℃ 电流/A 俯仰角/(°) 横滚角/(°) 牵引速度/(m·min−1) 2023-03-27 T03:03 75.26 84.27 −0.06 −0.49 7.14 2023-03-29 T02:06 70.17 68.23 1.28 −0.16 6.15 2023-03-29 T03:46 76.25 43.75 0.61 −0.21 8.16 2023-03-30 T01:37 71.96 80.80 2.98 −0.35 7.96 表 3 部分截割高度模板数值
Table 3. Partial values of cutting height template
p h1/cm h2/cm 8 265.0 175.1 28 257.9 182.7 48 233.8 179.4 68 242.8 182.7 88 240.9 179.0 108 237.6 188.6 128 241.7 182.8 146 188.9 194.9 表 4 不同模型正常区域滚筒高度误差对比
Table 4. Comparison of drum height errors in normal areas of different models
模型 滚筒 NRMSE MAE 最大偏差/cm RBF 左滚筒 0.566 0.039 15.356 右滚筒 0.444 0.035 25.442 ESN 左滚筒 0.383 0.025 12.815 右滚筒 0.376 0.037 22.707 C−ESN 左滚筒 0.338 0.023 9.956 右滚筒 0.164 0.016 11.471 表 5 不同模型三角煤区域滚筒高度误差对比
Table 5. Comparison of drum height errors in triangular coal regions of different models
模型 滚筒 NRMSE MAE 最大偏差/cm RBF 左滚筒 0.434 0.025 24.078 右滚筒 0.267 0.010 36.704 ESN 左滚筒 0.372 0.040 24.368 右滚筒 0.221 0.029 15.366 C−ESN 左滚筒 0.140 0.018 12.910 右滚筒 0.073 0.009 7.940 -
[1] 王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34-53.WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34-53. [2] 赵亦辉,赵友军,周展. 综采工作面采煤机智能化技术研究现状[J]. 工矿自动化,2022,48(2):11-18,28.ZHAO Yihui,ZHAO Youjun,ZHOU Zhan. Research status of intelligent technology of shearer in fully mechanized working face[J]. Industry and Mine Automation,2022,48(2):11-18,28. [3] 梁吉智,韩培毅,郭天骏,等. 综采工作面智能化装备关键技术与应用[J]. 煤炭科学技术,2021,49(增刊1):59-62.LIANG Jizhi,HAN Peiyi,GUO Tianjun,et al. Key technology and application of intelligent equipment in fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(S1):59-62. [4] 原长锁,王峰. 综采工作面透明化开采模式及关键技术[J]. 工矿自动化,2022,48(3):11-15,31.YUAN Changsuo,WANG Feng. Transparent mining mode and key technologies of fully mechanized working face[J]. Journal of Mine Automation,2022,48(3):11-15,31. [5] 李旭,吴雪菲,田野,等. 基于数字煤层的综采工作面精准开采系统[J]. 工矿自动化,2021,47(11):16-21.LI Xu,WU Xuefei,TIAN Ye,et al. Digital coal seam-based precision mining system for fully mechanized working face[J]. Industry and Mine Automation,2021,47(11):16-21. [6] 金锋,罗会强. 智能化采煤工作面运行现状及技术展望[J]. 工矿自动化,2021,47(增刊2):4-6.JIN Feng,LUO Huiqiang. Operation status and technology prospect of intelligent coal mining face[J]. Industry and Mine Automation,2021,47(S2):4-6. [7] 张翔. 基于记忆截割的采煤机自适应截割控制研究[J]. 机械管理开发,2022,37(8):139-140,143.ZHANG Xiang. Research on adaptive cutting control of shearer based on memory cutting[J]. Mechanical Management and Development,2022,37(8):139-140,143. [8] 黎青. 采煤机自主截割系统架构及关键技术研究[J]. 煤炭技术,2023,42(4):187-190.LI Qing. Research of structure and key technical of shearer’s autonomous cutting system[J]. Coal Technology,2023,42(4):187-190. [9] 马腾飞. 采煤机自动调高控制系统的设计与试验研究[J]. 机械管理开发,2022,37(3):294-295,298.MA Tengfei. Design and experimental research of automatic height adjustment control system for coal mining machine[J]. Mechanical Management and Development,2022,37(3):294-295,298. [10] 原彬,王义亮,杨兆建. 斜切工况下采煤机滚筒截割煤岩仿真分析[J]. 工矿自动化,2018,44(1):64-68.YUAN Bin,WANG Yiliang,YANG Zhaojian. Simulation analysis of shearer drum cutting coal-rock under oblique cutting condition[J]. Industry and Mine Automation,2018,44(1):64-68. [11] 刘鹏,孟磊,王勃,等. 基于位姿测量与煤层DEM的采煤机滚筒自动调高方法[J]. 煤炭学报,2015,40(2):470-475.LIU Peng,MENG Lei,WANG Bo,et al. An automatic height adjustment method for shearer drums based on pose measurement and coal seam DEM[J]. Journal of China Coal Society,2015,40(2):470-475. [12] 高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22.GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22. [13] 郭鑫. 基于电液比例控制的采煤机自动调高系统的研究[J]. 机械管理开发,2018,33(12):101-103.GUO Xin. Research on automatic height adjustment system of shearer based on electro-hydraulic proportional control[J]. Mechanical Management and Development,2018,33(12):101-103. [14] 张远辉,刘章棋,陈虹均. 基于模糊算法采煤机滚筒高度控制性能研究[J]. 液压与气动,2020(8):82-87. doi: 10.11832/j.issn.1000-4858.2020.08.013ZHANG Yuanhui,LIU Zhangqi,CHEN Hongjun. Height control performance of shearer drum based on fuzzy algorithm[J]. Chinese Hydraulics & Pneumatics,2020(8):82-87. doi: 10.11832/j.issn.1000-4858.2020.08.013 [15] 赵有生,邸晟钧,王占全,等. 改进的人工鱼群算法采煤机调高控制策略[J]. 煤炭工程,2020,52(2):136-141.ZHAO Yousheng,DI Shengjun,WANG Zhanquan,et al. Improved artificial fish swarm algorithm for height control strategy of shearer[J]. Coal Engineering,2020,52(2):136-141. [16] 李森,李重重,刘清. 基于透明地质的综采工作面规划截割协同控制系统[J]. 煤炭科学技术,2023,51(4):175-184.LI Sen,LI Zhongzhong,LIU Qing. Planned cutting and collaborative control system for fully-mechanized mining face based on transparent geology[J]. Coal Science and Technology,2023,51(4):175-184. [17] 杨芸. 采煤机现状与发展[J]. 工矿自动化,2017,43(1):26-28.YANG Yun. Status and development of shearer[J]. Industry and Mine Automation,2017,43(1):26-28. [18] JAEGER H,HAAS H. Harnessing nonlinearity:predicting chaotic systems and saving energy in wireless communication[J]. Science,2004,304(5667):78-80. doi: 10.1126/science.1091277 [19] 张昭昭,朱应钦,乔俊飞,等. 一种基于行为空间的回声状态网络参数优化方法[J]. 信息与控制,2021,50(5):556-565.ZHANG Zhaozhao,ZHU Yingqin,QIAO Junfei,et al. An echo state network parameter optimization method based on behavior space[J]. Information and Control,2021,50(5):556-565. [20] 刘清,韩秀琪,徐兰欣,等. 综采工作面采煤机和液压支架协同控制技术[J]. 工矿自动化,2020,46(5):43-48.LIU Qing,HAN Xiuqi,XU Lanxin,et al. Cooperative control technology of shear and hydraulic support on fully-mechanized coal mining face[J]. Industry and Mine Automation,2020,46(5):43-48. [21] ZHANG Zhaozhao,LIU Yue,ZHU Yingqin,et al. An online self-adaptive RBF network algorithm based on the Levenberg-Marquardt algorithm[J]. Applied Artificial Intelligence,2022,36(1):3794-3809. [22] 李重重,刘清. 基于截割顶底板高度预测模型的采煤机自动调高技术[J]. 工矿自动化,2024,50(1):9-16.LI Zhongzhong,LIU Qing. Automatic height adjustment technology of shearer based on cutting roof and floor height prediction model[J]. Journal of Mine Automation,2024,50(1):9-16.